
Submitted by
DI Raphael Mosaner,
BSc

Submitted at
Institute for System
Software

Supervisor and
First Evaluator
o. Univ.-Prof. DI
Dr. Dr. h.c. Hanspeter
Mössenböck

Second Evaluator
a. Univ.-Prof. DI Dr.
Andreas Krall

Co-Supervisor
Dr. David Leopoldseder

April, 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Machine-Learning-Based
Optimization Heuristics in
Dynamic Compilers

Doctoral Thesis
to obtain the academic degree of

Doktor der technischen Wissenschaften
in the Doctoral Program

Technische Wissenschaften

i

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not used
other than the sources indicated, and that all direct and indirect sources are acknowledged
as references.

Linz, April 28, 2023

DI Raphael Mosaner, BSc

iii

Abstract

Modern, optimizing compilers rely on hundreds of heuristics to decide whether and how
to apply optimizations during compilation. These heuristics are typically hand-crafted and
designed to achieve good performance on a set of benchmark programs which are based
on real-world applications. This manual process has multiple shortcomings: It requires
experienced compiler engineers as well as continuous re-evaluation and tweaking of
heuristics if compiler internals change. In addition, maintaining multiple, domain-specific
heuristics is often considered infeasible, which results in the deployment of one-size-fits-all
heuristics.

Data-driven approaches, based on machine learning, have been shown to outperform
hand-crafted compiler heuristics in that they can suggest optimization decisions which
yield better performing programs after compilation. Nevertheless, only a single recent
machine learning approach has made it into a production-level compiler. Existing research
primarily focuses on using machine learning in static compilers, where the compilation
process is stable and reproducible. In contrast, dynamic compilers run in parallel to the
executed program where they compile frequently executed code. On top of that, the use
of profiling-based speculative optimizations adds an additional level of non-determinism
to dynamic compilation. This lack of consistency aggravates the use of data-driven
approaches in such systems.

In this thesis, we make multiple contributions to the use of machine learning in dynamic
compilers. We address the problems of data stability and consistency by proposing
compilation forking, a technique for extracting performance data from method-local
optimization decisions in arbitrary programs. Based on this data, we train several machine
learning models to replace optimization heuristics for loop optimizations, such as peeling,
unrolling or vectorization. Furthermore, we present self-optimizing compiler heuristics,
based on machine learning models which are continuously refined with new data at the
user site. This approach also enables the creation of domain-specific heuristics which
we showed to outperform one-size-fits-all heuristics significantly. Apart from deploying
machine learning in production systems, we also outline how models can assist compiler
engineers during heuristics design and evaluation.

iv

We implemented our approaches in the GraalVM compiler, which is among the most
highly optimizing Java compilers on the market. Our learned models are either on par
with the well-tuned heuristics in the GraalVM or outperform them significantly with only
minor regressions. In addition to that, our assistive approach enabled improvements
in existing heuristics without the actual deployment of machine learning models in
production systems.

v

Kurzfassung

Moderne optimierende Compiler verwenden hunderte von Heuristiken um zu entschei-
den, ob und wie Optimierungen während einer Compilation durchgeführt werden sollen.
Diese Heuristiken werden typischerweise von Hand geschrieben und sind dahingehend
optimiert, dass sie für gewisse Referenzprogramme, die auf realen Programmen basieren,
gute Ergebnisse liefern. Dieser manuelle Prozess hat aber mehrere Nachteile: Das Erstellen
von Heuristiken erfordert erfahrene Compiler-Ingenieure, die diese Heuristiken nach
Änderungen im Compiler ständig neu bewerten und anpassen müssen. Außerdem ist es
meist nicht praktikabel, mehrere Heuristiken für verschiedene Anwendungsdomänen zu
warten, weshalb Heuristiken in der Regel allgemein gehalten sind.

In der Literatur wurde bereits gezeigt, dass datengetriebene Ansätze, die auf maschinellem
Lernen basieren, zu besseren Optimierungsentscheidungen führen als händisch erzeugte
Heuristiken, was die Performanz von übersetzten Programmen verbessert. Trotzdem hat
es bisher nur ein einziger Ansatz mit maschinellem Lernen in einen bekannten, kom-
merziell genutzten Compiler geschafft. Existierende Forschungsarbeiten konzentrieren
sich vor allem auf statische Compiler, bei denen der Übersetzungsprozess sehr stabil
und reproduzierbar ist. Im Gegensatz dazu übersetzen dynamische Compiler Codeteile
zu nicht vorhersehbaren Zeitpunkten während der Programmausführung. Zusätzlich
führen spekulative Optimierungen, die auf Nutzungsprofilen basieren, zu einem gewissen
Nicht-Determinismus im Compiler. Der Mangel an Reproduzierbarkeit erschwert den
Einsatz datengetriebener Ansätze in solchen Systemen.

In dieser Dissertation tragen wir in mehrfacher Hinsicht zum Einsatz von maschinellem
Lernen in dynamischen Compilern bei. Wir sorgen für die Stabilität und Konsistenz von
dynamischer Übersetzung indem wir Compilation Forking vorstellen, das es uns erlaubt,
die Effektivität von Optimierungsentscheidungen innerhalb von Methoden beliebiger
Programme zu messen. Basierend auf diesen Messdaten, trainieren wir verschiedene
Modelle mittels maschinellem Lernen und ersetzen damit manuelle Heuristiken für Schlei-
fenoptimierungen, wie Peeling, Unrolling und Vektorisierung. Ferner präsentieren wir
einen Ansatz, um Heuristiken fortlaufend zu optimieren, indem das dahinterstehende
Modell wiederholt mit neuen Daten zur Laufzeit trainiert und verbessert wird. Dieser

vi

Ansatz erlaubt es auch, Heuristiken für spezielle Anwendungsdomänen zu erzeugen, die,
wie wir zeigen konnten, bessere Ergebnisse liefern als allgemein gehaltene Heuristiken.
Neben dem tatsächlichen Einsatz von maschinell trainierten Modellen zur Laufzeit, zeigen
wir auch, wie diese Modelle Ingenieuren helfen können, die bestehenden Heuristiken zu
verbessern und zu evaluieren.

Alle unsere Ansätze wurden im GraalVM Compiler implementiert, einem der besten
optimierenden Java Compiler am Markt. Unsere trainierten Modelle liefern zumindest
ähnliche Ergebnisse wie die manuell optimierten Heuristiken im GraalVM Compiler; oft
sind unsere Modelle signifikant besser und nur selten etwas schlechter. Zusätzlich unter-
stützt unser Ansatz Ingenieure bei der Verbesserungen der manuell erstellten Heuristiken,
was auch ohne die Verwendung von maschinell gelernten Modellen nützlich ist.

vii

Contents

I Introduction and Overview 1

1 Introduction 3
1.1 Problem Setting . 3
1.2 Problem Statement . 4
1.3 State-of-the-Art . 6
1.4 Remaining Challenges . 9
1.5 Contributions . 10

1.5.1 Scientific Contributions . 10
1.5.2 Technical Contributions . 12
1.5.3 Publications . 12

1.6 Limitations . 14
1.7 Project Context . 15
1.8 Outline . 17

2 Background 19
2.1 GraalVM . 19

2.1.1 HotSpot VM . 20
2.1.2 GraalVM Compiler . 21
2.1.3 Graal IR . 22
2.1.4 Truffle . 24

2.2 Machine Learning . 24
2.2.1 Terminology . 24
2.2.2 Machine Learning Models . 26

3 Overview 29
3.1 Machine Learning to Assist Compiler Engineers 29
3.2 Predicting the Code Size Impact of Duplication 30
3.3 Compilation Forking . 32
3.4 Self-optimizing Models . 34
3.5 Unrolling of Vectorized Loops . 36

II Publications 39

4 Machine Learning in Dynamic Compilers 41

5 Predicting Code Size 45

viii Contents

6 Compilation Forking 55

7 Self-optimizing Heuristics 85

8 Learned Vector Unrolling 101

III Related Work and Conclusions 115

9 Related Work 117
9.1 Previous PhD Theses . 118
9.2 Iterative Compilation and Multi-versioning 118
9.3 Autotuning . 119
9.4 Machine Learning in Static Compilers . 121
9.5 Machine Learning in Dynamic Compilers 124
9.6 Data Generation . 126
9.7 Entry Barrier . 127
9.8 Self-optimizing Models . 128

10 Future Work 129

11 Conclusions 131

Bibliography 135

Acknowledgements 159

Part I

Introduction and Overview

3

Chapter 1

Introduction

1.1 Problem Setting

Dynamic compilation [12; 42] is a technique to compile and optimize programs just-in-
time (JIT), while they are executed. In contrast to static compilation, where programs are
compiled ahead-of-time (AOT), dynamic compilers can usually rely on run-time information
that is collected prior to compilation and is used to apply optimizations based on the
program’s behavior.

Dynamic Compilation In a dynamic execution environment, such as the Java Virtual
Machine (JVM) [71], a program is initially compiled with a simple baseline compiler or
directly executed in an interpreter. This results in poor performance during program start-
up—called warmup [14]—during which the runtime environment also gathers profiling
information, such as function invocation counts, loop frequencies and branch probabilities.
When program parts are considered hot, i.e. frequently executed and therefore worth to
be optimized, the runtime environment invokes a dynamic compiler. This triggers an
optimized compilation of the hot program parts during which the previously collected
profiling information is used to apply aggressive and often speculative optimizations. If,
for example, a dynamic call site only encountered one concrete receiver type T during
interpretation, the dynamic dispatch in the compiled code can be replaced with a concrete
call to the method of T. The assumption, that the callee is always of type T, needs to
hold during execution, which is ensured by a guard. If, at some point, this assumption is
invalidated, deoptimization [70] switches back to an interpreted version of the code and
typically triggers a re-compilation with the updated assumptions, or re-profiles the code
in the interpreter. At some point, dynamically compiled programs typically reach a steady
state of peak performance where no more compilations or optimizations are performed.
This marks the end of the program warmup [14].

4 Introduction

Compiler Optimizations Compilers, dynamic or static, are equipped with a multitude of
optimizations, developed over decades of research. Optimizations are semantic-preserving
transformations of the code or an intermediate representation of it during compilation.
Their predominant goal is to increase the performance of the compiled program, which
can be a higher throughput or a reduced execution time. In achieving this goal, trade-
offs between performance gain and code size growth, or, in case of dynamic compilers,
compile time increases, which impact the program warmup, have to be made. For
example, loop unrolling reduces the number of how often the loop condition has to
be evaluated, but the code size increase of this transformation can pose problems for
subsequent optimizations.

Compiler Heuristics When and how to apply compiler optimizations is subject to
compiler heuristics. These heuristics can take static code structure and dynamic profiling
information into account and produce an optimization decision. For example, depending
on the number of instructions inside a loop and the profiled probability of entering the
loop, loop peeling [13] or unrolling [13] might be either applied or omitted. Compiler
heuristics are typically hand-crafted. Their design process is iterative where compiler
experts define conditions and thresholds for optimizations and evaluate their impact on
the performance with a set of benchmark programs. These benchmark programs are
selected with the goal to correlate with real-world programs.

The research presented in this thesis focuses on dynamic compilation systems.

1.2 Problem Statement

Hand-crafted compiler heuristics suffer from multiple shortcomings. Designing heuristics
correctly requires comprehensive experience in compilers and optimizations. Loop peel-
ing [13], for instance, is a transformation which moves one or more loop iterations to before
the loop. Applying this transformation to the loop in Listing 1.1 would enable subsequent
optimizations which eventually lead to the simplified and more efficient code in Listing 1.2.

1 i n t redundant = 0 ;
2 for (i n t i = 0 ; i < 1 0 0 ; i ++) {
3 dst [i] = s r c [i] + redundant ;
4 redundant = i ;
5 }

Listing 1.1: Loop with redundant variable
before peeling.

1 dst [0] = s r c [0] ;
2 for (i n t i = 1 ; i < 1 0 0 ; i ++) {
3 dst [i] = s r c [i] + (i − 1) ;
4

5 }

Listing 1.2: Loop with redundant variable
removed after peeling.

Introduction 5

Keeping track of all follow-up optimizations while designing a heuristic (e.g., whether
to peel a loop or not) is tedious if done by hand. Changes in the compiler, integration of
new optimizations or re-ordering of existing phases requires evaluating and updating
established heuristics [4].

Optimizations and heuristics are typically evaluated on a set of benchmark programs of
manageable size. These are either micro-benchmarks, where the impact of specific opti-
mizations can be easily investigated but interplay with other optimizations is neglected,
or larger programs where aggregated performance impacts are reported but internal
speedups and slowdowns might have cancelled out. In addition, benchmarks are usually
selected so that they represent a good mixture of all possible programs. This leads to
heuristics being designed in a one-size-fits-all manner with the goal on working well on
the average program. Hand-crafting heuristics for every specific domain or architecture or
even for an execution with specific input data does not scale in terms of development and
maintenance effort.

Human errors, limitations in benchmark selection and the impracticality of hand-crafting
heuristics for different domains have led to data-driven approaches for heuristics de-
sign. Machine learning has been used to automatically create (near-)optimal compilation
decisions based on raw data, removing the need for hand-crafted, error prone heuris-
tics [10; 96; 157]. The established workflow for supervised learning of compiler heuristics
is shown in Figure 1.1. In supervised learning [37] a machine learning model is trained
with data, where the desired prediction output is known. First, program features, such

foo (...) {
 …
}

Compiler foo
mov eax, [ebx]
…

ML Model
Features Success Metrics

Compilation Parameters

Figure 1.1: Abstract depiction of supervised learning for compilers.

as control flow characteristics or the number of instructions inside a loop, are extracted.
These features will be the input to the machine learning model and describe the code to
be optimized. After extracting the features, the sample program is compiled multiple
times with different compilation parameters, such as loop unroll factors or vector lengths.
The selected compilation parameter values are monitored as well. When executing the
compiled programs, success metrics are measured, such as execution time or code size. In

6 Introduction

that way, triplets of program features, compilation parameters and success metrics need to be
extracted for many programs. For each program, the compilation parameter configuration
which resulted in the compilation with the best performance is assigned as the label for the
program’s feature set. Finally, the features and the corresponding labels form the training
data, which can be used to create a machine learning model. The trained model takes as
input a set of program features and predicts as output the compilation parameters which
optimize the success metric.

Obtaining training data can be a challenging task with respect to the success metric
measurements. This is especially true for optimization parameters which are selected
method-locally, such as loop unrolling factors, where the impact on particular loops
needs to be measured in isolation. Hence, related work on machine learning in static
compilers often learns global or method-specific compiler flags rather than method-local
optimization decisions.

In dynamic compilers, obtaining training data is even more challenging. In order to
identify the compilation parameter value which results in the best performance, multiple
compilations of the same code need to be compared. These versions need to be compiled
identically, apart from the compilation parameter whose impact needs to be measured.
However, dynamic compilers produce less consistent results than static compilers, because
they run in parallel to the executed program. If the compilation of one method takes longer
than usual, due to memory or CPU load, more profiling information for not yet compiled
methods can be gathered. Therefore, profile-based optimizations of future compilations
can be performed differently. Ultimately, identical source programs can result in different
machine code when compiled dynamically. This aggravates measuring the impact of
compilation parameters consistently across multiple compilations. In addition, using
machine learning during dynamic compilation directly impacts the total execution time of
the program. Therefore, dynamic compilers need to be much more careful with the use of
complex models.

This thesis contributes solutions to the difficulties of using machine learning in dynamic
compilers to improve optimization heuristics and to assist compiler engineers in their
work.

1.3 State-of-the-Art

Machine learning has been used in compiler research for decades [10; 96; 157], with
projects, such as MilepostGCC [52; 53] or OpenTuner [8] having gained wide popularity.

Introduction 7

To put our research in the context of previous work, we shortly discuss the state-of-the-art
of techniques and approaches, used in static and in dynamic compilers. An in depth
comparison to related work can be found in Chapter 9.

Iterative Compilation Iterative compilation [17] aims to find the optimal performance of
programs by compiling them repeatedly with different optimization parameters. Genetic
algorithms are typically used to efficiently explore the, often infeasibly large, state space
which is spanned by the set of adjustable compiler flags [25; 150]. Iterative compilation,
based on efficient (genetic) search algorithms, is still used for optimizing programs [119;
125]. However, it can also be considered as the origin for using machine learning in
compilers [96]. Supervised approaches use iterative compilation to find the best set of
parameters for a compilation, which is then used as input for training a machine learning
model [10; 96; 157]. This way, the expensive task of compiling programs multiple times
can be performed offline, whereas the trained model is then used as knowledge base to
predict good configurations online.

Obtaining Training Data If explicit training data for supervised learning is required,
current approaches often use custom (micro-)benchmarks. For compiler flag tuning [8; 53],
iterative compilation and end-to-end performance measurements of whole programs can
be used to obtain labelled data sets [96]. Method-local performance measurements are
typically performed by instrumenting code regions with timestamps [140] or by extracting
hardware performance counters [26; 124], e.g. with PAPI [153] or the HPCToolKit [3]. The
more training data is provided during training, the better the model will perform [35].
However, obtaining large sets of training data is still considered a problem in current
research, which often falls back to synthetically creating benchmark programs with genetic
algorithms or deep learning [35; 155].

Machine Learning Algorithms Over the last years, with new developments in the
areas of deep learning and neural networks [15; 141], these techniques have become a de
facto standard across many domains [6], including compilers. Deep neural networks are
universal function approximators, which can learn arbitrary input-output relationships if
a sufficiently complex network architecture is chosen. Due to the prevalent use of graph-
based intermediate representations in compilers, graph neural networks are explored in
current compiler-related research [19]. Non-deep-learning-based models, such as support
vector machines [32] or decision trees [20], are used less frequently but can provide
accurate predictions for isolated tasks as well. Decision-tree-based models also have the
advantage of being human-readable [143]. More recently, reinforcement learning [77] has

8 Introduction

found its way into compiler construction [63; 104; 156]. This kind of learning algorithm
makes no distinction between training and prediction phases. Feedback about the quality
of the last prediction is immediately used to update the underlying model at run time.

Features Features are the input to a machine learning model [96; 151]. In the context
of compiler optimizations, they describe the source code which is compiled or its inter-
mediate representation, which is often graph-based. Frequently used features shared
among related works are: number of memory or arithmetic instructions, number of
branches [91; 143; 151]; graph features [19; 123], such as edge counts or node counts.
Dynamic features, derived from profiling information, such as loop frequency or concrete
data types, are used more rarely due to the focus on machine learning in static compilers.
There are also approaches which use features that describe the behavior of code, extracted
with performance counters [124], rather than its static structure [24]. The potentially
available features are well explored. Feature pre-processing steps, such as correlation
or importance analysis are often tied to the specific problem at hand and are not solved
universally.

Optimizations Current research on machine learning in compilers often attempts to
find holistic solutions across multiple optimizations. These approaches address phase
ordering [91; 104], optimization selection [74; 124] or flag tuning [25; 143]. Sometimes,
loops or loop nests are being optimized holistically, by taking supported loop optimiza-
tions into account and trading them off against each other [89; 105]. Heuristics for specific
optimizations are considered far less frequently in research of the past few years. The more
frequently addressed single optimization heuristics which are investigated with machine
learning are: inlining [25; 143], loop unrolling [149] and vectorization [63; 108; 109]. We
believe that an isolated view on single optimizations can help to boost the effectiveness of
these optimizations.

ML Entry Barriers There are many research projects which show that machine learning
models can outperform hand-crafted heuristics. However, we are only aware of a single
state-of-the-art industry compiler which uses machine learning in production [154]. This
approach, however, optimizes for code size rather than for performance. Current research
addresses this scarcity by providing frameworks [8; 36; 154] for lowering the entry barrier
for compiler engineers to get familiar with machine learning. They provide interfaces to
common compiler optimizations and different learning algorithms to use. We believe that
these efforts are worth pursuing, as they close the gap between machine learning research
and compiler construction.

Introduction 9

1.4 Remaining Challenges

Albeit being researched for a long time, machine learning is still not picked up by com-
mercial production compilers. Some unsolved challenges only hamper its use in dynamic
compilers, which we focus in this thesis, whereas other problems are inherent to the use
of machine learning, regardless of static or dynamic compilation.

Black-box Deployment Machine learning is sometimes considered as wizardry, con-
sidering that it solves difficult problems in a way which is often not understandable by
humans. Frameworks, such as scikit-learn [127], PyTorch [126], Keras [28] or Tensor-
flow [2], open the use of machine learning to a broader community of non-experts, by
providing abstraction layers to hide the mathematics behind training and prediction. The
deployment of models into larger systems is facilitated by libraries, such as ONNXRun-
time [120], Tribuo [129], or DL4J [152]. This shifts the machine learning knowledge to
the maintainers of the libraries and away from the immediate users of the frameworks,
when designing an actual model architecture and a training pipeline. After deploying a
machine learning model in a compiler, it might solve tasks better than compiler engineers,
but it is often not evident why. If a model performs even worse on some programs, debug-
ging the regression and finding its root cause in either training data, model architecture,
hyperparameters or learning algorithm is challenging, especially for compiler engineers
without in-depth ML knowledge. We believe that this is the main reason, why machine
learning is not used in production compilers. Therefore, a substantial challenge is to retain
maintainability and understandability when using machine learning in a compiler.

Training Data Creating a well-performing machine learning model depends on the
availability and quality of training data. Obtaining enough training data for learning
compiler-internal tasks is difficult. This is confirmed by related work, which addresses the
lack of available training data [96] or research on how to generate artificial training data or
benchmark programs [56; 155]. Creating training data requires to have a sufficient amount
of (benchmark) programs to execute, which will produce accurate measurements of how
isolated optimization decisions impact certain program regions. Thereby, optimizations
can be performed on an arbitrary level of granularity, i.e. method-local. Related work in
static compilation has found solutions and workarounds for instrumenting and measuring
the performance of differently compiled program snippets. However, similar approaches
in dynamically compiled programs pose additional challenges, as two compilations of
the same program likely result in differences in the compilation process. We consider

10 Introduction

obtaining the impact of method-local optimization decisions in a dynamic compiler as
having been neglected so far and, thus, as an unsolved challenge.

User Behavior If two identical programs, functions or code snippets are used with
vastly different inputs or environments, the compilation has to be adapted to achieve
optimal performance. For example, existing approaches use the CPU architecture as a
feature to base compilation decisions on the underlying hardware. However, there will
always be implicit knowledge of the system which is not modelled explicitly as part of the
features. Additionally, user behavior or provided input data can hardly be reflected in a
static set of features. Related work tends to aim for models which perform well on general
workloads [154], whereas optimizing for user specific environments or behavior is only
addressed on rare occasions [119].

Automated Update Machine learning models are usually untouched after training and
deployment, with few exceptions [151]. If models have good generalization properties,
frequent updates might not be necessary [154]. For specialized models, however, changes
in the domain need to be reflected in the model as well. There are approaches which use
pre-trained models and refine them later with specialized data [63]. However, cyclic and
automated update processes are not yet available, even with reinforcement learning [77]
on the rise.

1.5 Contributions

1.5.1 Scientific Contributions

This thesis contributes to the state-of-the-art of using machine learning in dynamic com-
pilers for improving optimization heuristics. The scientific contributions in chronological
order are:

Heuristics Design and Validation We show how machine learning can be used to assist
compiler engineers in improving existing hand-crafted heuristics. In [110], we proposed
a pipeline where compiler engineers use machine learning during the heuristics design
process. An implementation of this pipeline in the GraalVM compiler [170], which used a
so-called assistance mode [116], led to improvements in existing hand-crafted heuristics for
estimating code size impacts of optimizations. In a similar way, we found performance

Introduction 11

bugs in vectorization heuristics after deploying our learned models [111]. In addition, we
also outlined how the use of human-readable, decision-tree-based models can help in the
initial heuristics design process, similar to [143].

Compilation Forking Related work [35; 155] mentions the lack of available training
data, which hinders solving compiler-related tasks with machine learning. We introduce
compilation forking [113], a novel technique which enables large-scale performance data
generation for method-local optimization parameters in a dynamic compiler. We present
how compilation forking helps to overcome obstacles introduced by dynamic compilation
which were either not solved in related work or overlooked. Compilation forking has been
successfully used for obtaining training data in multiple of our published work [111; 112;
113].

Self-optimizing Compiler Heuristics We present an approach [112] where new mod-
els or previously deployed pre-trained models are automatically tailored to currently
executed programs. Our approach shows that compilation forking, together with de-
optimization allows this tedious task to happen at user site without requiring control
over the environment or having particular benchmark programs. These self-optimizing
heuristics achieve significant speedups compared to heuristics which are designed for
global use. The ideas behind self-optimizing heuristics and compilation forking have also
been patented [115] together with Oracle Labs.

Learned Optimization Heuristics We present multiple case studies where we replaced
existing compiler heuristics with learned models. In [116] we showed how the code size
impact of optimizations can be estimated with the help of neural networks. Subsequent
models aim towards improving the performance of loop-related optimizations. For
our research with compilation forking [113], we created machine learning models for
loop peeling and loop unrolling. Our models achieve similar performance as the highly
optimized GraalVM compiler when replacing the hand-crafted heuristics. In a subsequent
work [112], we used deep learning to obtain highly-specialized models for loop peeling
in specific benchmarks. These highly specialized models outperformed the GraalVM
compiler significantly on several benchmarks. In our final study [111], we learned the
optimal unroll factor to be used for vectorized loops. We analyzed the impact of different
sets of training data, as well as different feature and model configurations. The resulting
models achieve significant speedups over current static heuristics.

12 Introduction

1.5.2 Technical Contributions

Some of the contributions presented in this thesis have been integrated and are shipped as
part of the GraalVM.

Timestamp Instrumentation Developed as part of compilation forking, the IR graph
instrumentation for measuring the aggregated execution time of methods within program
executions has been merged into the GraalVM and helps engineers by providing fine-
grained performance measurements.

Compilation Forking The approach as a whole will be integrated into GraalVM’s
benchmarking infrastructure as part of future work.

Existing Heuristics Using machine learning in an assistive way, we were able to im-
prove hand-crafted heuristics in the GraalVM. This includes updating the weights of
nodes in the deployed node cost model [99] and fixing performance bugs in GraalVM’s
duplication and vectorization algorithms.

1.5.3 Publications

The core contributions of this thesis, addressing novel solutions for optimizing heuristics
in dynamic compilers, are summarized in five peer-reviewed publications. The unaltered
author versions of these publications are found in Part II. These papers are:

[110] Machine learning to ease understanding of data driven compiler optimizations.
Raphael Mosaner. In Companion Proceedings of the 2020 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH Companion 2020). pp. 4–6. DOI: 10.1145/3426430.3429451

[116] Using machine learning to predict the code size impact of duplication heuristics
in a dynamic compiler. Raphael Mosaner, David Leopoldseder, Lukas Stadler, and
Hanspeter Mössenböck. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes (MPLR 2021), pp. 127–135.
DOI: 10.1145/3475738.3480943

Introduction 13

[113] Compilation Forking: A Fast and Flexible Way of Generating Data for Compiler-
Internal Machine Learning Tasks. Raphael Mosaner, David Leopoldseder, Wolf-
gang Kisling, Lukas Stadler, and Hanspeter Mössenböck. In The Art, Science,
and Engineering of Programming, 2023, Vol. 7, Issue 1, Article 3, pp. 1-29. DOI:
10.22152/programming-journal.org/2023/7/3

[112] Machine-Learning-Based Self-Optimizing Compiler Heuristics. Raphael Mosaner,
David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and Hanspeter Mössenböck.
In Proceedings of the 19th International Conference on Managed Programming Languages
and Runtimes (MPLR 2022), pp. 98–111. DOI: 10.1145/3546918.3546921

[111] Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning
Models. Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter
Mössenböck. In Proceedings of the 14th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages (VMIL 2022), pp. 36-47. DOI:
10.1145/3563838.3567679

One additional, peer-reviewed publication has been made outside the scope of this thesis
and is therefore not included in Part II:

[114] Supporting On-stack Replacement in Unstructured Languages by Loop Recon-
struction and Extraction. Raphael Mosaner, David Leopoldseder, Manuel Rigger,
Roland Schatz, and Hanspeter Mössenböck. In Proceedings of the 16th ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes (MPLR
2019), pp. 1-13. DOI: 10.1145/3357390.3361030
In this study, we showed how on-stack replacement can be utilized in bytecode-
interpreter-like languages. We did this by reconstructing loops and encapsulating
them in separate execution units which can be compiled on their own when becom-
ing hot. An implementation in the GraalVM compiler showed significant reductions
in program warmup time.

Apart from the publications in scientific journals and conference proceedings, the idea of
compilation forking and its application to optimize heuristics at run-time has resulted in a
patent:

[115] Online Machine Learning Based Compilation.
Raphael Mosaner, David Leopoldseder and Lukas Stadler.
U.S. Patent Number 11.392.356 filed February 26th, 2021, Issued July 19th, 2022

14 Introduction

1.6 Limitations

The contributions of this thesis provide advancements to how machine learning can be
used in dynamic compilers. Nevertheless, the presented approaches still have limitations,
which are either inherent or have to be addressed as part of future work.

Measurement Noise The use of the processor time-stamp counter (RDTSCP-command)
for performing execution time measurements is accepted across related work [93; 140].
However, related work often uses coarse-grained measurements, for example only at the
start and at the end of long-running methods. Our performance measurements are more
fine-grained and monitor the impact of method-local optimization decisions. Following the
uncertainty principle, measurement noise grows with more fine-grained measurements.
Controlling the measurement noise has been a challenging task throughout this thesis,
which we still consider not fully solved. In Chapter 6 and Chapter 7, we described our
pre-processing steps to remove data points for which it cannot be guaranteed that noise
has no impact when calculating the label. We are certain to have advanced the state-of-the-
art when it comes to obtaining accurate measurements for arbitrary code. Nevertheless,
measuring optimizations with minor impacts on the surrounding function is still limited
by the level of measurement noise.

Environment We deliberately designed our approaches [112; 113] without the need for
a fully-controlled environment. However, context switches, for example, can cause huge
outliers for measured execution times. We had to take additional measures to either detect
large outliers on-the-fly or exclude data points with large variance from our training
data.

Scalability Compilation forking [113] creates multiple versions of a function, which are
recombined after individual compilation. This poses limitations in terms of scalability.
The compile time until fork recombination increases linearly with the number of versions.
Tasks after recombination (register allocation, code generation, etc.) can scale worse if
their run-time complexity scales polynomially with the size of the graph, for example. The
code size increases during compilation forking can also be a limiting factor if too many
versions are explored. As discussed in [113], compilation forking should therefore not be
used to exhaustively explore large state spaces.

Introduction 15

Model Generalization Generalization and overfitting can be crucial factors when train-
ing machine learning models. Designing models which perform well on heterogeneous
sets of data is a difficult task, as experiments in [113] show. The more homogeneous
the data is, e.g. benchmarks from the same suite [113], the better the trained models
perform on similar data. Our study on self-optimizing heuristics [112] has shown that
highly overfitted models are able to achieve the best results. Leaning either towards
worse-performing, general models or leaning towards highly overfitted well-performing
models is a design decision which we consider as a limiting factor of not only our approach
but of machine learning in general.

Dynamic ML Overhead Invoking large machine learning models during dynamic
compilation has an immediate impact on the program warmup and total execution time.
This is a limitation which cannot be circumvented. In [111], we showed that model
loading can be a very expensive task. Therefore, short-running programs where few
model decisions are required are advised to use pruned models. If models need to be
invoked frequently during dynamic compilation, the compile time overhead may become
significant. However, optimizing the usage of machine learning models was not the focus
of this thesis.

1.7 Project Context

The research conducted in this thesis has been made—and was funded—in the context of
the GraalVM [170] project, which originated from a long-standing research collaboration
between Oracle Labs1 (formerly Sun Microsystems) and the Institute for System Software2

(SSW) at the Johannes Kepler University Linz. This research collaboration dates back to a
sabbatical of Prof. Hanspeter Mössenböck, the head of the SSW, at Sun Microsystems in
2000 where he improved the intermediate representation in HotSpot’s C1 compiler [84] and
implemented a graph-coloring register allocator [117]. Subsequent research introduced
new algorithms and concepts into the HotSpot VM:

• Mössenböck and Pfeiffer [118] proposed an algorithm for linear scan register allo-
cation for HotSpot’s C1 compiler, which was more performant than the previously
implemented graph-coloring register allocator [117]. The algorithm was further re-
fined by Wimmer and Mössenböck [160] who implemented multiple optimizations,
which improved the quality and the performance of compiled code.

1https://labs.oracle.com
2https://ssw.jku.at

https://labs.oracle.com
https://ssw.jku.at

16 Introduction

• Kotzmann and Mössenböck [82] implemented escape analysis in HotSpot’s C1
compiler and added means for tracking optimized objects and methods to safely
handle deoptimization [83].

• Wimmer and Mössenböck [161] implemented object colocation in the HotSpot VM,
which groups objects on the heap according to access patterns. Based on this work,
they added automated object inlining [162; 164] and array inlining [163] to HotSpot.

• Würthinger et al. [166; 167; 168; 169] modified HotSpot to support dynamic updates
of running programs via class re-definition.

• Häubl and Mössenböck [64] researched trace compilation, inlining of traces [65]
and the transition between interpreted and compiled traces caused for example by
exceptions [66].

Since the successful introduction of the GraalVM [170], several PhD students were in-
volved in the collaboration with Oracle Labs where they conducted research in the context
of the GraalVM compiler and the Truffle framework [165]:

• Stadler et al. improved the compiler start-up time by introducing caching of IR
graphs and priority queuing of compilation tasks [145]. They analyzed the perfor-
mance impact of compiler optimizations, which were designed for Java programs,
on Scala benchmarks [146]. Furthermore, they proposed partial escape analysis,
which enables optimizing non-escaping objects for individual branches [147].

• Duboscq et al. introduced an intermediate representation for the GraalVM compiler,
the Graal IR [45; 46], which is based on the sea-of-nodes [29] concept in HotSpot’s C2
compiler, but provides additional features for supporting speculative optimizations
and deoptimization.

• Grimmer et al. [58; 59] implemented TruffleC, which enables execution of C programs
in the GraalVM by using the Truffle framework [165].

• Grimmer et al. [60] introduced language interoperability in the Truffle framework,
which enabled efficient access to data structures or methods from other Truffle-based
languages. They especially achieved large speedups when using C extensions in
other languages [61].

• Rigger et al. [134] extended on TruffleC [58] to build a Truffle-based LLVM interpreter,
called Sulong [131; 133]. Based on Sulong, they addressed undefined behavior in
C [135], enabled safe execution of unsafe programs on the JVM [132; 134] and
detected bugs in C programs [136; 137].

Introduction 17

• Daloze et al. [39] researched guest language safepoints and their usage in a Truffle-
based implementation of Ruby. Their work extended into thread-safety and paral-
lelization for dynamically-typed languages [38; 40].

• Eisl et al. [47] proposed trace register allocation, where register allocation is per-
formed for small sections of a method, and compared it to GraalVM’s holistic linear
scan register allocator. They investigated trade-offs between compile time and per-
formance of compiled code, by using different allocation strategies for individual
traces [48] and proposed a theoretical model for parallelizing trace register allocation.

• Leopoldseder et al. [97; 100] researched how code duplication can enable com-
piler optimizations. They simulated the optimization opportunities after a duplica-
tion [100] and used a cost model [99] to trade-off code size increase and expected
performance gain. Based on their algorithm, they improved loop unrolling in the
GraalVM compiler [98].

• Kreindl et al. [85; 86] proposed TruffleTaint, a platform, which enables taint propaga-
tion across language boundaries [86]. TruffleTaint can flexibly select properties for
taint labels and their propagation [88] and has relatively low run-time overhead,
due to GraalVM’s speculative optimizations [87].

• Kloibhofer and Makor [78; 102] currently research how dynamically analyzing
processed data can be used to select efficient compilation and execution strategies,
such as transforming arrays to columnar storage for faster access [79; 103].

1.8 Outline

This thesis is structured into three parts. The first part, continues with providing back-
ground information to concepts related to the GraalVM and machine learning techniques
in Chapter 2 and summarizes and connects the scientific publications of this thesis in
Chapter 3. The second part presents all papers, which were published in the course of
this thesis in Chapters 4 to 8. The author versions are unaltered to the initial publications
and are self-contained in terms of the bibliography. The third part finally discusses related
work in Chapter 9, gives an outlook to future work in Chapter 10, and recapitulates the
key insights of our research in Chapter 11.

19

Chapter 2

Background

This chapter spans a bridge to the scientific publications in Part II, which due to the
required brevity of conference papers often fall short of discussing background concepts
in a sufficiently detailed manner. Thus, this chapter introduces important concepts of
the GraalVM [170] in the context of which the research of this thesis has been conducted.
Furthermore, it provides a terminology of machine-learning-related concepts and gives an
overview of the types of models which were employed in Part II.

2.1 GraalVM

The approaches presented in this thesis, along with case studies and experimental eval-
uations have been implemented and performed in the GraalVM. The GraalVM [170],
depicted in Figure 2.1, is a Java virtual machine (VM) [75] based on the HotSpot VM [71],
which uses the GraalVM compiler [170] for aggressive optimizations and the Truffle
framework [170; 171] for polyglot execution of programs that cannot be compiled to
Java bytecode. The GraalVM also provides ahead-of-time (AOT) compilation to native

HotSpot VM (or Substrate VM)

GraalVM Compiler

TruffleJava Kotlin Scala Clojure

JS Node.js Python Ruby R Wasm LLVM
(C, C++)

Figure 2.1: GraalVM architecture.

20 Background

platform executables. In this native image mode, the GraalVM compiler is deployed in
the SubstrateVM rather than in the HotSpot VM. However, this thesis uses the GraalVM
compiler only in the context of the HotSpot VM.

2.1.1 HotSpot VM

The HotSpot VM [71] is the most widely used Java virtual machine and is part of the
OpenJDK [121], the official reference implementation of Java [73] since version 7. Dynamic
compilation with multiple optimization levels (tiers) allow for, both, aggressive, profiling-
based optimizations and relatively fast program start-up times.

Interpreter

Profiling
Information

Java
Source Code

javac

Java
Bytecode

C1
Compiler

collect

Graal
Compiler

deoptimize

compile /
optimize

compile /
optimize

C2
Compiler

use

Figure 2.2: HotSpot’s tiered compilation.

Figure 2.2 summarizes HotSpot’s tiered compilation. A Java program, compiled to Java
bytecode, is initially executed by HotSpot’s template-based interpreter, which sequentially
maps every bytecode to assembly code snippets of the target machine [71]. Program execu-
tion during interpretation is slow, but compiling to bytecode is much faster than compiling
to optimized machine code, which only pays off for small portions of the program that ac-
count for most of the execution time. The interpreter collects profiling information, which
serves two tasks: identifying what parts of a program to compile and how to compile
them. Method invocation counts and loop iteration counts—monitored by counting the
number of executed backward jumps—are used to identify hot, i.e., frequently executed,
code parts; thus the name HotSpot. If a method has been executed frequently enough,
HotSpot triggers the dynamic compilation of this method, and subsequent invocations
use the compiled and optimized version of the method. High loop iteration counts can
also lead to a method becoming hot, which accounts for rarely executed, but long-running
methods due to frequently executed loops. In such cases, on-stack replacement (OSR) [41]
can be used for switching to a compiled version between loop iterations while the method
is executed. When compiling a method, profiling information is used to identify beneficial
optimizations or to apply speculative optimizations. For example, loops can be optimized

Background 21

differently depending on their profiled iteration counts, or virtual calls can be removed
if the profiling information for this call site only encounters a single receiver type. If
profiling-based assumptions later turn out to be wrong, HotSpot uses deoptimization [70]
to switch back to an interpreted or less optimized version of the method, often followed
by a re-compilation with adapted assumptions.

HotSpot uses multiple compilers and configurations, which allows a good trade-off
between compile time and optimization level. The C1 compiler [84] allows for fast but
less optimized compilations. It is used if methods are becoming hot and need to be sped
up compared to their execution in the interpreter. For simple methods, which do not have
much optimization potential, the C1-compiled version is often sufficiently fast. However,
C1 continues to collect profiling information and can trigger the more expensive but
highly optimizing compilation via the C2 compiler [122] or the GraalVM compiler [170].
Figure 2.3 summarizes the performance of a method during HotSpot’s tiered compilation.

invocations | time

pe
rf

or
m

an
ce

C1 compilation

C2 / Graal compilation

deoptimization

interpretation

…

Figure 2.3: Performance of a method during tiered compilation.

At some point, programs usually achieve a steady state of peak performance, if no further
compilations or deoptimizations need to be performed. This marks the end of the warmup
phase.

2.1.2 GraalVM Compiler

The GraalVM compiler [170] is a highly-optimizing dynamic compiler written in Java. It
replaces the C2 compiler [122] in the HotSpot-based GraalVM by using the JVM compiler
interface (JVMCI) [76]. At the point of writing this thesis, the GraalVM compiler can apply
over 60 optimizations across multiple abstraction layers, partitioned into frontend and
backend. An overview of the internal structure of the GraalVM compiler can be seen in
Figure 2.4.

22 Background

● graph building
● escape analysis
● inlining
● loop optimizations
● …

● lock elimination
● safepoint handling
● framestate assignment
● loop optimizations
● …

● scheduling
● simplifications
● …
● LIR generation

Frontend
High-tier Mid-tier Low-tier

Backend

● low-level optimizations
● register allocation
● code generation

Java
Bytecode

Machine
Code

Figure 2.4: Overview of the GraalVM compiler.

Initially, the compiled Java bytecode is turned into a graph-based intermediate representa-
tion, the Graal IR [45; 46], which facilitates the optimization process. The graph building
followed by the high-tier, the mid-tier and the low-tier form the compiler frontend. Each
of these frontend tiers encapsulates multiple optimization phases which are performed
on the IR. At the end of each tier, the IR is de-sugared and transformed into more low-
level instructions. This process is called lowering. In the high-tier, IR nodes correspond
closely to the Java bytecode. The compiler applies optimizations such as inlining, partial
escape analysis, duplication or loop optimizations. After lowering the IR to mid-tier, Java
bytecode-like instructions are replaced with architecture-agnostic machine-level instruc-
tions. For example, address-based memory semantics are introduced instead of Java object
accesses. Optimizations in the mid-tier contain lock elimination, safepoint [139] handling
for loops and partial loop unrolling [98]. The low-tier introduces architecture-specific
instructions, e.g. memory addressing specific to amd64 [7] or aarch64 [1]. The main
purpose of the low-tier is to prepare the IR for LIR generation, which is the intermediate
representation used in the backend. This includes a graph scheduling algorithm for creat-
ing the basic block structure for the control-flow-graph-like LIR. The compiler backend
contains some low-level optimizations, the register allocation and the code generation.

All optimizations which are addressed in this thesis are part of the compiler frontend.
Loop peeling is part of the high-tier, partial loop unrolling is found in the mid-tier and
vectorization is applied in the low-tier, because it is architecture-specific. The instrumenta-
tion for extracting timestamps is added after all major optimizations as the last phase of
the low-tier.

2.1.3 Graal IR

The GraalVM compiler uses a graph-based intermediate representation in its frontend,
which is called Graal IR [45; 46]. It is based on the sea-of-nodes concept [29], which models
both control flow and data flow and was first implemented for the C2 compiler.

Background 23

The sea-of-nodes IR has been developed as an enhancement of the static single assignment
(SSA) form [138]. Code in SSA form has each variable assigned only at a single location
which simplifies usage-definition analysis and benefits many optimizations. Programs can
be transformed into SSA form by introducing artificial variables for each assignment and
so-called ϕ-instructions at control flow merges to combine the artificial variables from the
incoming branches. GCC [55] or LLVM [92] use SSA form on top of control flow graphs
(CFG), where each graph node represents a basic block, which encapsulates instructions in
a fixed order without incoming or outgoing jumps. The sea-of-nodes concept implements
SSA form but relaxes the strict order of instructions in basic blocks which allows for a
more flexible placement of instructions.

Graal IR represents control flow and data flow in a single graph with different edge types,
as shown in Figure 2.5. Control flow edges (red), pointing downwards, impose a fixed

Start

End

LoopBegin

If

Begin LoopExit

LoadField: sum

StoreField: sum

LoopEnd

Return

<

+

Const: 1 Param: upperConst: 0

φ

+

FrameState

FrameState

FrameState

FrameState

1 static int sum = 0;
2
3 static void sum(int upper) {
4 for (int i = 0; i < upper; i++) {
5 sum += i;
6 }
7 }

floating node

state node

fixed node

control flow

data flow
association

…

…

Figure 2.5: Graal IR example.

order on the connected nodes. These nodes are called fixed nodes and model branches,
loops or operations with side effects, such as memory reads or writes. Data flow edges
(blue) point upwards from data usages to definitions, represented by nodes which can be
floating. This means, that they do not have strict requirements regarding their position in
the graph, as long as each value is defined before it is used. The actual position where
a floating node is executed is fixed as late as possible in a process called scheduling.
A schedule of the whole graph needs to be created for the transition to the backend’s
CFG-based LIR. As Graal IR is in SSA form, ϕ nodes are attached to control flow merges
to pick a value depending on the executed branch. In Figure 2.5, the value of the ϕ node
representing i is either 0 if the loop is entered via the pre-header or i+1 if entered via

24 Background

the back edge. Finally, FrameState nodes contain all information which is required by the
interpreter to continue execution after deoptimization. They are attached to side-effecting
nodes or control flow positions where deoptimization is supported.

In this thesis, we performed all instrumentation of the code directly on its Graal IR
representation, using the appropriate nodes on the respective level of abstraction.

2.1.4 Truffle

The Truffle [170; 171] language implementation framework is part of the GraalVM and can
be used for implementing abstract syntax tree (AST) interpreters for arbitrary languages.
Truffle enables execution of programs, which are not available as Java bytecode, on
GraalVM, so that they profit from all optimizations which are provided by the GraalVM
compiler. In addition, Truffle interpreters are self-optimizing using partial evaluation
based on the first Futamura projection [54]: The interpreter is specialized to a specific
input program, and AST operations are inlined until the tree collapses to a single node.
Due to the GraalVM compiler, Truffle implementations of languages such as JavaScript or
Python achieve performance close to native execution.

While Truffle is not explicitly addressed in this thesis, it enabled evaluating our approach
for non-Java workloads. In Chapter 7 we encountered significantly larger speedups for
JavaScript benchmarks, which indicated that hand-crafted heuristics in the GraalVM
compiler were not optimized for all languages equally well.

2.2 Machine Learning

In this section, we briefly discuss machine-learning-related terminology and concepts
which were used in this thesis.

2.2.1 Terminology

Feature A feature is a measurable property of an object of interest. A feature vector
contains all features which describe the object of interest. In the context of this thesis,
features describe properties of code or its behavior when executed. Examples of
features are the number of AddNodes in a code’s Graal IR representation or the profiled
frequency of a loop.

Background 25

Target A target is a property of an object of interest whose value should be predicted
by a machine learning model. Examples of targets in this thesis are the code size of a
method after compilation or the unroll factor which maximizes the performance of a
loop.

Label A label is the "true" value of a target property. In this thesis, labels are often
identified via success metric measurements. For example, when measuring the per-
formance of a loop with different unroll factors, the factor that provides to highest
speedup becomes the label for the target "unroll factor".

Data Point Data points or samples consist of the measured feature vectors for particular
objects and their corresponding target label(s). The total of all data points denote the
data set which is used for training and testing a model.

Training / Learning Training or learning is the process of using a machine learning
algorithm to build a machine learning model based on the provided training data.
Supervised learning [37], which is used in this thesis, uses labelled feature vectors to
establish a mapping from features to targets during training. Unsupervised learning,
in contrast, does not require labelled data and can, for example, be used to identify
patterns in feature vectors.

Prediction / Inference Prediction or inference is the process of providing a tuple of
feature values—a feature vector—to a machine learning model which produces one
or multiple target values as output. These outputs are called predictions.

Classification - Regression Classification models predict a result from a set of defined
classes, whereas regression models predict arbitrary numeric values. Predicting the
best loop unroll factor ∈ 1, 2, 4, 8, 16 would be a classification task, whereas predicting
the size of the machine code after compilation would be a regression task.

Cross-validation Cross-validation [81] is a technique to determine the prediction ac-
curacy of a machine learning model and its capability to generalize to unseen data.
The data set is split into multiple subsets. Then a model is trained on the union of all
but one of these subsets and the remaining subset is used for testing the model, by
comparing its labels to the model’s predictions. This process is repeated for all combi-
nations of training and test data and the model is rated with the average prediction
accuracy.

Overfitting A model is overfitted [144] to the training data, if it has perfectly learned
all its peculiarities, including noise. As a result, the model works very well on the
known data, but lacks the ability to generalize to new data, where it performs poorly.

26 Background

2.2.2 Machine Learning Models

Over the past decades, numerous machine learning algorithms have been developed,
each with its own slight variations and hyperparameters to configure the architecture
and the training of the model. In the research conducted in this thesis, we focused on
neural networks [15; 141] and decision trees [20; 68], which are briefly summarized in this
section.

Neural Networks Artificial neural networks (ANN) [6; 141] are a widely used class
of machine learning models which imitate human or animal brains. Figure 2.6 depicts
the general structure of ANNs. They consist of an input and an output layer as well

…
…

… …

hidden layersinput layer output layer

feature1

feature2

featureN

output1

output2

w1
1

w1
m

w3
m

w3
1

Figure 2.6: Neural network architecture.

as so-called hidden layers in-between; multiple hidden layers led to the notion of deep
neural networks (DNN) or deep learning [6; 141] . Layers consist of neurons—named
after their counterparts in the human brain—which are connected with other neurons
unidirectionally. Each of these connections has a weight, which is determined during
training. When data is flowing through the network, the value (called activation) of each
neuron is calculated by the weighted sum of all input values. The activation is then fed
into an activation function, which introduces non-linearity, and its result is the output
of the neuron which is forwarded to the next layer. The model architecture (i.e. the
number and types of layers and how neurons are connected) as well as the use of batch
normalization [72] or dropout [144] layers affect the training process. Apart from the

Background 27

model architecture, two additional hyperparameters affecting the training process are: the
batch size, which defines how many samples need to be processed before model parameters
are updated, and the learning rate, which defines how much the weights are adapted for
each processed batch of training data. Hyperparameters often have to be determined
empirically.

I R1 R2 R5 O…

Figure 2.7: Residual neural network with skip connections.

Residual neural networks [67], as shown in Figure 2.7 where each box corresponds to one
layer of neurons, are another shape of neural networks, which we used in this thesis. They
use skip connections to speed up the learning process of deep networks and to enable
training with less data, because the training initially focuses on the smaller "sub-networks"
which emerge from skipping other layers [67].

Random Forests While neural networks often make decisions which are not compre-
hensible by humans, random forests [68] are human-readable. A random forest model
consists of multiple decision trees [20], each being trained on a randomly selected subset
of the data. The final output of a random forest is either the average or a majority vote
over the outputs of its decision trees. Figure 2.8 depicts a snippet of a decision tree for a
classification problem to identify whether an object belongs to either class A or to class
B based on three features. During training, the algorithm identifies conditions on the
features, to separate the training data according to the class labels. During prediction, a
decision tree starts at its root node and evaluates the conditions based on the object’s fea-

dist= [100, 50]
class = A

feature1 < 100 ?

dist = [80, 10]
class = A

feature2 == “true” ?

dist = [20, 40]
class = B

feature3 == 0.0 ?

true false

… …

Figure 2.8: Snippet of a decision tree.

28 Background

tures until a leaf node is reached. Then it assigns the class, which has been attached to the
leaf node during training, to the object. Each node in Figure 2.8 contains the distribution of
the training data in the first line, the most frequent class in the training data in the second
line and the next split condition. For example, in the tree’s root node, 100 data points from
the training data belong to class A and 50 to class B, making A the dominant class for this
node. Therefore, if the tree had no further layers, every data point would be predicted to
be of class A, which would result in an accuracy of 66.67% for the training data. However,
the condition f eature1 < 100 separates the training data further, resulting in the nodes of
the second layer. Objects, with f eature1 < 100 would be classified as A and objects with
f eature1 >= 100 would be classified as B. The bottom right node shows that 20 A objects
from the training data would be falsely classified as B, because B is the most frequent
class in the distribution of the node. For the training data, 120 of all 150 data points (80%)
would be classified correctly based on the first split condition. Additional split conditions,
such as f eature2 == ”true” or f eature3 == 0.0, would separate the training data further.
The maximum depth of decision trees is a hyperparameter which can be specified. When
increased, more and more conditions are used to eventually separate the training data
perfectly. However, this facilitates overfitting and degrades the overall model performance
on unknown data, as discussed in Chapter 8.

29

Chapter 3

Overview

This chapter presents an overview of the research topics which are presented in this thesis
and how they are connected. Each section summarizes one of the research papers which
are presented in Chapter 4 to Chapter 8.

3.1 Machine Learning to Assist Compiler Engineers

Machine learning has been used in research compilers for decades [10; 96; 157], with
sophisticated projects such as MilestoneGCC [52; 53] getting popularity nearly 15 years
ago. Besides rapid developments in new machine learning techniques and compiler
research picking up on the latest learning algorithms [19; 63; 156], industry compilers still
refrain from using machine learning. In our paper Machine Learning to Ease Understanding of
Data Driven Compiler Optimizations [110], we identified the degradation of maintainability
and understandability as the major obstacles for deploying machine learning black boxes
in compilers. Related work uses an all-or-nothing approach when it comes to machine
learning in compilers: Compiler heuristics are either hand-crafted and understood by
experts, or they are automatically derived from data by using machine learning algorithms,
but then hardly maintainable.

We propose a different approach [110], where we envision machine learning as a tool
for compiler engineers to improve existing heuristics while retaining maintainability.
Figure 3.1 depicts our feedback-driven approach, where machine learning does not seize
control of major decisions. Our initial vision shows that machine learning can either
assist the compiler, by taking over sub-tasks where no suitable hand-crafted heuristics
are available or it can guide compiler engineers when improving existing heuristics. This

30 Overview

ML Compiler

ProgramsHeuristics

compiles

produceused to train /
update

implemented in

FeaturesML ModelCompiler
Expert

assists

verify / fix

Figure 3.1: Machine learning in compilers - feedback cycle [110].

works by comparing outputs from the machine learning model to decisions based on the
hand-crafted heuristics. Both important use cases are embedded in a loop to indicate
the importance of re-evaluating or updating heuristics after new data has arrived. This
can either be an immediate adaptation to the external environment if new programs are
compiled or if the same programs are used in a different way, which can be inferred
from the profiling information. It can also be an adaptation to internal changes caused
by ongoing compiler development, such as updating optimization logic or adding new
optimization passes. The larger feedback loop, involving compiler engineers, is coupled to
the compiler development process to verify that heuristics fit the changed system. In case
of performance bugs in unknown programs, machine learning models can automatically
notify engineers of overlooked patterns in their heuristics.

3.2 Predicting the Code Size Impact of Duplication

Our follow-up research [116] implements the vision of assistive machine learning in the
context of code duplication. Duplication is an enabling optimization, which, on its own,
has no performance benefits but relies on subsequent optimizations which can only be
applied after code segments have been duplicated. Listing 3.1 to Listing 3.3 [116] depict
this optimization process. The return statement in Listing 3.1 is duplicated into both
predecessor branches, which results in the larger code in Listing 3.2. However, due to
the knowledge about x, additional optimizations can be applied, resulting in the more
performant and smaller code in Listing 3.3.

Overview 31

1 i f (x > 0) {
2 phi = x ;
3

4 } e lse {
5 phi = 0 ;
6

7 }
8 return phi + 2 ;

Listing 3.1: Before duplication.

1 i f (x > 0) {
2 phi = x ;
3 return phi + 2 ;
4 } e lse {
5 phi = 0 ;
6 return phi + 2 ;
7 }
8

Listing 3.2: After duplication.

1 i f (x > 0) {
2

3 return x + 2 ;
4 } e lse {
5

6 return 2 ;
7 }
8

Listing 3.3: After optimization.

Duplicating all code from control flow merges would result in the highest optimization po-
tential [100], but on many occasions just leads to code size increases without performance
gains. The GraalVM compiler uses an elaborate heuristic [99; 100] for making a trade-off
between the expected gain, i.e. speedup, of a duplication and the expected cost in terms
of the code size increase. Replacing this heuristic with a learned model would result in a
hard to verify black box. In accordance with our previous work [110], we replaced only
a minor sub-task with a machine learning model. The goal was to learn the code size
impact of duplications in order to validate the underlying estimation heuristic [99] in the
GraalVM compiler. This heuristic builds on a cost model, which assigns each node type in
the GraalIR [45; 46] an abstract static size [99]. These abstract sizes were carefully chosen
by hand.

Machine learning has been used in the past to estimate the size of compiled programs [30;
31; 154]. However, duplication in the GraalVM compiler is embedded between many
other compiler phases. Therefore, while duplication is applied to regions of the IR graph,
the duplicated nodes are likely to be changed by subsequent optimization passes. This
rendered intuitive linear regression models [158], which we used in initial experiments,
insufficient. Experiments with deep neural networks [15; 141], which are capable of cap-
turing the non-linearities, reduced the number of incorrect predictions. We implemented
an assistance mode where compiler engineers are informed about different duplication
decisions depending on the underlying code size estimator—either heuristic or ML model.
This assistance mode has been used by compiler engineers to unveil misconfigurations in
the hand-crafted heuristics for estimating the code size impact.

We evaluated or approach on five established benchmark suites: DaCapo [16], Scala-
DaCapo [142], Renaissance [130], Octane [27], JetStream [128]. Our evaluation includes three
configurations: 1) the default GraalVM compiler with the hand-crafted heuristics for
estimating code size impacts, 2) the GraalVM compiler where machine learning models
replace these hand-crafted heuristics and 3) the GraalVM compiler with improvements

32 Overview

in the hand-crafted heuristics which were triggered by our machine-learning-based as-
sistance mode. Speedups on some benchmark suites but slowdowns on others indicate
that one-size-fits-all heuristics do not perform equally well on all programs. Detailed
benchmark results can be found in the corresponding paper in Chapter 5.

The training data for this research was easily obtainable, as acquiring the code size
of compiled programs is hardly susceptible to measurement noise. Learning optimal
duplication heuristics with respect to the performance impacts of method-local duplication
decisions would be more difficult. Creating models based on performance measurements
in a dynamic compiler poses challenges regarding consistency and measurement noise
which are not yet resolved in related work.

3.3 Compilation Forking

The core contribution of this thesis is the concept of compilation forking [113], which solves
the problem of obtaining performance measurements for method-local optimizations
in a dynamic compiler. Compilation forking enhances the benchmarking capabilities of
a dynamic compiler and can be used for arbitrary user programs during conventional
execution. We used compilation forking to generate the training data for our performance-
based machine learning models.

In static compilers, programs can be compiled multiple times with different compiler
flags to obtain the most performant flag combination. This process is called iterative
compilation [17] or auto-tuning [10] and optimizes the program as a whole. For example,
iterative compilation can identify the best global loop unroll factor for a program. However,
this approach is not suitable for identifying the best loop unroll factor for each function, or
even loop, individually. Related work has addressed this by re-compiling only functions
(or parts of functions) and adding instrumentation for measuring the function’s run time.
This approach works for static compilation but requires a controlled environment in which
compilation happens in exactly the same way in every re-compilation.

Measurement Noise In our research, we identified three sources of measurement noise:
1) compilation noise, which is specific to dynamic compilation where the compiler runs in
parallel to the executed programs. This can lead to different compilations of the same
source function, depending on the moment of compilation and the current profiling

Overview 33

information. 2) usage noise, where a method’s execution times have a high variance
depending on parameters or global variables. 3) environment noise, which is caused by
CPU frequency scaling, scheduling or caching.

Compilation Forking We designed compilation forking to address these sources of mea-
surement noise without the need of a controlled environment. Figure 3.2 shows its abstract
process on source code level. In our implementation, all transformations and instrumenta-
tions are performed on the compiler IR. The dynamic compiler compiles a function up to

void foo (...)
 for (0 … limit) {
 // loop body
 }
}

void foo_0 (...)
 for (0 … limit) {
 // loop body
 }
}

void foo_1 (...)
 if (0 < limit) {
 // loop body
 }
 for (1 … limit) {
 // loop body
 }
}

void foo (...)

 switch (invocations++ % 2)
 case 0:
 for (1 … limit) {
 // loop body
 }
 break;
 case 1:
 if (0 < limit) {
 // loop body
 }
 for (1 … limit) {
 // loop body
 }
 break;
}

…

compile until
optimization

create different versions

…

…

compile versions
separately

recombine

version selection

versions measure execution
time via instrumentation

Figure 3.2: Compilation forking [113] (simplified). Timestamp instrumentation omitted.

the point where an optimization of interest is applied—loop peeling in case of Figure 3.2.
Then, it makes multiple copies (forks) of this intermediate compilation state and applies op-
timizations with different parameters to each copy. Figure 3.2 shows foo_0 where the loop
is not peeled and foo_1 where the first loop iteration is peeled. This approach ensures that
all versions share the same past, i.e., the same compilation noise up to the fork point. After
the compiler has finished compiling the versions independently, it adds to each version
an instrumentation for measuring its aggregated self time during execution (omitted in
Figure 3.2), which excludes calls to other functions as well as safepoints, where garbage
collection can take place. Then, the compiler recombines the compiled and instrumented
versions and adds to the recombined function a dispatch logic to execute one of the forks
each time the recombined function is called. Thus, the forks are executed in a round-robin
scheme, which ensures that each version is called consistently throughout different phases
of the program execution. This averages out usage noise. Environment noise cannot be fully
controlled and is handled by a custom outlier detection instrumentation.

34 Overview

We claim that compilation forking produces consistent measurements of method-local com-
pilation decisions in a dynamic compiler. To verify this claim, we used compilation forking
to generate training data for creating two optimization heuristics with machine learning.
Each time a compilation is forked, we collect features of the compilation and infer the best
parameter from the performance measurements of each fork. Following this approach, we
created one machine learning model for deciding whether to peel the first loop iteration or
not, and another model for selecting a loop unroll factor ∈ 1, 2, 4, 8, 16, 32. Our experimen-
tal results, which can be found in full extent in the paper contained in Chapter 6, showed
that models which are trained on data produced by compilation forking perform similarly
to the highly-tuned hand-crafted heuristics in the GraalVM compiler. This indicates that
compilation forking enables creating accurate performance data in dynamic compilers.

We also evaluated the impact of compilation forking on the total program compile time,
the execution time and the code size. Compile time and code size grow linearly with the
number of forks, whereas the program execution time is affected by the instrumentation
and depends on the proportion of method size to instrumentation instructions. However,
the execution time overheads only occur outside the measurement regions. The detailed
evaluation for each benchmark suite can be found in Chapter 6.

In our initial experiments, we performed compilation forking offline to create data for model
training. After deploying the trained model, compilation forking is disabled. However,
as compilation forking runs transparently to the user, it can also be used in a production
system, which inspired our next research topic.

3.4 Self-optimizing Models

Traditional approaches, which use machine learning in compilers [10; 157], have a clear
distinction between the model training phase, which happens offline, and the model
usage, which happens after deploying the compiler. Reinforcement learning [77] is an
exception where the performance of each compiled program can be used immediately as
feedback to improve the machine learning model. However, existing approaches [63; 104]
use reinforcement learning only prior to deploying the compiler.

In our research on self-optimizing compiler heuristics [112] we propose a system where model
training, model usage and model refinement can happen in production at user site. We
dynamically switch between data generation and model usage in a single program run.

Overview 35

void foo () {
 if (_mode != DATA_GEN)
 deopt();

 switch (version++ % nrVersions)
 // …
 // forks with instrumentation
 // …
 }
}

void foo()
 // optimized code
}

ML Model

3) deoptimize &
re-compile with model

Shared Storage

1) collect
training data

2) train or
refine model

4) deoptimize & fork

Figure 3.3: Self-optimizing compiler heuristics [112]. Simplified workflow.

Figure 3.3 summarizes the processes within our system; a more detailed architecture and
component description can be found in Chapter 7. During data generation, all functions
are compiled with compilation forking [113] and the extracted feature and performance data
for learning an optimization heuristic is collected in a shared storage. After a pre-defined
time, a learning server fetches the generated training data and either creates a new model
or updates an existing model. Then the server provides the machine learning model
to the compiler, which deoptimizes [70] and re-compiles the functions without forking.
During re-compilation, the machine learning model works as a heuristic for selecting
the learned optimization parameter values to improve the program’s performance. For
long-running server applications, this process can be executed multiple times in a single
program execution to account for changes in the program’s usage over time.

We selected a client-server architecture to relief the user system from model training,
which requires additional software and hardware. The learning server fulfills several
tasks: it pre-processes the training data, removes less informative or potentially noisy data
and, when creating a new model, selects relevant features. The pre-processing steps, the
features and the model architecture can be found in Chapter 7.

We evaluated our approach in the GraalVM compiler [170] with the loop peeling optimiza-
tion, which has already been used in our research on compilation forking [113]. However, in
the research on self-optimizing models [112], the goal was to obtain highly-specialized
models, and overfitting was deliberately taken into account. We formulated two hypothe-
ses: 1) that highly-specialized machine-learning-based heuristics can increase the peak
performance of compiled programs and 2) that pre-trained models can be tuned towards
a new environment during dynamic compilation. We tested the first hypothesis by cre-
ating a new loop peeling model for each benchmark using the automatized approach

36 Overview

from Figure 3.3. For benchmarks from the JetStream [128] and Octane [27] suites, multiple
significant speedups could be measured, four of them exceeding 30%. To test the second
hypothesis, we first executed our approach on the Xalan benchmark from the DaCapo [16]
suite, to create a new model. We tested this Xalan model on the gcc-loops benchmark
from the JetStream suite, which showed no speedup at all. After automatically refining
the model with the data from the gcc-loops benchmark, a significant speedup could be
encountered for gcc-loops. The performance of the Xalan benchmark when using the model
refined for gcc-loops showed no regressions. For detailed results for each benchmark we
refer to Chapter 7.

With our research on self-optimizing compiler heuristics we showed that machine learning
can be used to automatically create or refine heuristics, which can lead to significant
improvements in peak performance. In contrast to related work, our models are automati-
cally refined at the user site without any re-deployment of the compiler.

3.5 Unrolling of Vectorized Loops

Our work on learning heuristics for loop peeling [112; 113] showed that minor transfor-
mations can have large performance impacts. This is often caused by interactions with
other optimizations, such as vectorization. In our research on unrolling of vectorized
loops [111], we investigated potential performance gains when tailoring loop unrolling
towards vectorization with machine learning.

This research originated from the absence of dynamic heuristics in the GraalVM compiler
for finding the optimal unroll factor for vectorized loops. Currently, the heuristics for
selecting the unroll factor for vectorized loops are based on global compiler parameters
and benefit some benchmarks but degrade the performance of others. We conducted a
study where we learned dynamic heuristics for selecting the unroll factor VU ∈ 1, 2, 4, 8, 16
for vectorized loops. For this study, we refrained from deep learning and used Random
Forests [68], which are human-readable and can provide insight into what features and
thresholds are important. As training data, we compiled a set of 231 micro-benchmarks
with compilation forking and extracted program features as well as the optimal unroll factor
for each vectorized loop. These are the same micro-benchmarks which have been used by
Oracle engineers when designing the vectorization heuristics in the GraalVM compiler.
This facilitates a fair comparison between static (global) heuristics and a learned model.

Overview 37

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(a) lib | ¬graph | ¬pruned.

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(b) lib | ¬graph | pruned.

Figure 3.4: Relative speedup compared to default GraalVM [111]. Higher is better.

We evaluated three training configuration parameters: 1) including or excluding training
data stemming from standard library functions, 2) including or excluding features which
describe the whole IR graph surrounding the vectorized loop, and 3) pruning or not
pruning the decision trees to a pre-defined depth. The three binary parameters resulted
in eight models which we evaluated in terms of accuracy and predicted distribution.
Insights from the training process, for example, that tree pruning counters overfitting
and yields more accurate results, are discussed in greater detail in Chapter 8. Figure 3.4
shows the performance results of deploying two of the eight models in the compiler. The
performance is normalized to the default GraalVM; bars above the horizontal line indicate
speedups from the learned model. On average, each of our models outperformed the
existing static heuristic by 8%-12%; the best models always involved pruned decision
trees.

Due to large compile time increases for some models, we conducted an in-depth analysis
on where compile time is spent when using the random forest classifier in production. The
detailed results can be found in Chapter 8. This analysis concluded that model loading is
an expensive task which suggests pruning decision trees to decrease the model size.

Part II

Publications

41

Chapter 4

Machine Learning in Dynamic Compilers

This chapter includes the initial publication of this thesis, which outlines our vision of
using machine learning in dynamic compilers to improve existing hand-crafted heuristics
and assist compiler engineers in the development process.

Paper: Raphael Mosaner. 2020. Machine learning to ease understanding of data driven
compiler optimizations. In Companion Proceedings of the 2020 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH Companion 2020). Association for Computing Machinery, New York, NY, USA,
4–6. https://doi.org/10.1145/3426430.3429451

Note: This paper was published as part of a Doctoral Symposium. In the corresponding
student research competition at SPLASH 2020, this work (paper and poster presentation)
was awarded the first place in the graduate category.

Machine Learning to Ease Understanding of Data
Driven Compiler Optimizations∗

Raphael Mosaner
raphael.mosaner@jku.at

Johannes Kepler University
Linz, Austria

Abstract
Optimizing compilers use—often hand-crafted—heuristics
to control optimizations such as inlining or loop unrolling.
These heuristics are based on data such as size and structure
of the parts to be optimized. A compilation, however, pro-
duces much more (platform specific) data that one could use
as a basis for an optimization decision. We thus propose the
use of machine learning (ML) to derive better optimization
decisions from this wealth of data and to tackle the shortcom-
ings of hand-crafted heuristics. Ultimately, we want to shed
light on the quality and performance of optimizations by
using empirical data with automated feedback and updates
in a production compiler.
CCSConcepts: •Computingmethodologies→Machine
learning; • Software and its engineering → Dynamic
compilers; Just-in-time compilers.

Keywords: Machine Learning, Neural Network, Regression,
Dynamic Compiler, Optimization, Heuristics
ACM Reference Format:
Raphael Mosaner. 2020. Machine Learning to Ease Understanding
of Data Driven Compiler Optimizations. In Proceedings of the 2020
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Com-
panion ’20), November 15–20, 2020, Virtual, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3426430.3429451

1 Motivation
There is a large amount of metrics which cause compilers
to take vastly different decisions when dynamically compil-
ing code [10]: CPU features, code features, timing or pro-
filing data. Machine learning can be—and has been [10]—
successfully used to find near-optimal parameters for driving
compiler optimizations. Such parameters include inlining
depth, loop unrolling factors or cost models for assessing
∗This research project is partially funded by Oracle Labs.

SPLASH Companion ’20, November 15–20, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 2020 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity (SPLASH
Companion ’20), November 15–20, 2020, Virtual, USA, https://doi.org/10.1145/
3426430.3429451.

the quality of optimization opportunities. However, learning-
based solutions are often employed as a black box, causing
their adoptions by compiler developers to be rather low.
Thus, machine learning hardly finds its way into dynamic
production compilers. None of HotSpot, JavaScript V8 [11]
or Graal compiler [13] are using machine learning to make
decisions during dynamic compilation to our knowledge. For
LLVM, there is a recent approach1 trying to use reinforce-
ment learning to improve heuristics in a static compilation
setup, which is not in production either. Our motivation is
thus, to leverage the advantages of machine learning in the
domain of compiler development by creating an iterative ap-
proach for incrementally evaluating and optimizing compiler
decisions for a state-of-the-art dynamic compiler.

2 Problem
Compiler optimizations often rely on hand-crafted heuristics,
which are fine-tuned by compiler experts to provide near-
optimal results with respect to pre-defined success metrics.
Those metrics are highly domain-specific, like peak perfor-
mance for long-running applications or minimal code size
for embedded software. Tuning compiler heuristics is often
an incremental process involving a learning-by-doing ap-
proach for compiler developers, as indicated in Figure 1a.
Therefore, the quality of hand-crafted heuristics reflects the
expertise of compiler engineers and the benchmarks that are
used for creating and evaluating the heuristics. In practice,
those heuristics are often static and use a one-size-fits-all
approach [10]. The pragmatic reason is, that the wide range
of customers with varying requirements but no expertise
in performance engineering need to be provided with a de-
fault solution covering most use cases. Besides, performance
heuristics are hardly ever changed, because of unforeseeable
implications to the system as a whole, which can cause per-
formance regressions as result of misinterpreted data. There
are essentially three problems with hand-crafted heuristics:

• they require domain expertise
• they are often static and one-size-fits-all
• they require manual maintenance and updates based
on human-interpreted data

Machine learning can be used to significantly reduce these
problems by providing an automated, data driven approach,

1http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html

SPLASH Companion ’20, November 15–20, 2020, Virtual, USA Raphael Mosaner

Compiler

Benchmark
Programs

Heuristics

evaluated on

analyzed bycreates

implemented in

Compiler
Expert

Compiler

...
Programs

compiles

makes
decisions in

used to train

ML Model

User
Programs

Benchmark
Programs

Features

ML Compiler

a) b)

produce

Figure 1.Workflows in existing compilers. a) depicts the iterative process of compiler experts optimizing heuristics and b)
illustrates the traditional black-box approach when machine learning is employed in compilers.

which can be used for creating custom heuristics or optimiza-
tion decisions for different environments. There has been a
variety of research in this area over the last decades [2, 12].
Figure 1b depicts the traditional approach for introducing
machine learning in a compiler. However, using machine
learning as a black box may complicate maintenance and
further compiler development on top it. Embedding machine
learning into a compiler is also time-consuming, especially in
just-in-time (JIT) compilers where compile time directly im-
pacts run time and performance of a program. Thus, machine
learning should be used complementary to domain knowl-
edge, to both verify and improve optimization heuristics
while introducing automation and maintaining understand-
ability at the same time.

3 Approach
In this paper we propose an approach where machine learn-
ing is used in an assistive way to support compiler optimiza-
tions. Figure 2 depicts the high-level workflow to obtain
understandable, yet data-driven improvements for particular
optimizations. It combines features from machine learning—
such as automatic adaptation of existing heuristics—with
supporting compiler experts to derive new knowledge. It al-
lows an assessment of existing compiler decisions by compar-
ing them against findings that are purely derived from data.
There are several studies [7, 10] where machine learning has
performed better than human-crafted heuristics. However,
they lack any feedback into existing optimizations. The feed-
back loop in our approach, as indicated in Figure 2, can either
be fully automated to react to changes in the environment
online, or by providing a compiler expert with information
which can be analyzed offline to improve the heuristics.

When defining success metrics for our approach, we have
to consider its multi-dimensionality in a dynamic production
compiler. We are targeting:

• performance of the compiled program
• compilation time / warmup
• maintainability in the context of automated feedback
• understandability of compiler internals (data analysis)

More general, a performance improvement is tied to the
performance metrics of the underlying optimization, which

ML Compiler

ProgramsHeuristics

compiles

produceused to train /
update

implemented in

FeaturesML ModelCompiler
Expert

assists

verify / fix

Figure 2. Workflow of assistive machine learning in com-
pilers. Machine learning is used to automatically provide
feedback based on observed compilation data.

might include a trade-off between execution time and code
size or memory usage. Besides, with automated feedback
and optimizations enabled via machine learning, success
metrics can be found on the soft side of a compiler, including
easier maintainability and more domain-specific compilers
in general. For our machine learning pipeline, we use the
following abstract steps, which are embedded in Figure 2:

Data Generation: Similar to human expertise, a machine
learning model has to build up its knowledge initially. Thus,
we need to generate a sufficient amount of data, by compiling
a set of benchmark suites (cf. Section 3.1) to extract program
characteristics. For future projects we plan to expand the
set of learning data, by compiling standard libraries or user
programs to train models for particular domains.

Feature Engineering: In a machine learning task, a tar-
get value is predicted using a set of input features fed into a
model. For the domain of compilation, these features can be
roughly grouped into static, dynamic, and graph-based [12].
Their number can be important when it comes to model size
and prediction speed, which both are crucial factors in a
dynamic production compiler. Depending on the problem
context, the number of features can be reduced by removing
correlating features. Principal component analysis (PCA)[1]
might be a viable option to obtain maximum information
from a minimum number of features. However, PCA creates
new features by combining existing ones, which reduces
overall understandability and should therefore be omitted if
there are more intuitive ways for reducing features.

Learning: There is a variety of different learning tech-
niques to build machine learning models [2, 12]—most of

Machine Learning to Ease Understanding of Data Driven Compiler Optimizations SPLASH Companion ’20, November 15–20, 2020, Virtual, USA

them are applied offline. However, we plan to automate the
process of updating the model online after new data is en-
countered.

Feedback: One paramount component in our assistive
ML approach is the feedback loop which manifests itself on
multiple occasions. As indicated in Figure 2, the ML model
should be automatically updated after new data has emerged.
Furthermore, feedback regarding the quality of heuristics
should be automatically incorporated by updating (static)
heuristics. Ultimately, compiler experts should be provided
with data to investigate compiler internals based on findings
from learned data.
3.1 Evaluation Methodology
We claim that machine learning can greatly help with im-
proving compiler optimizations. To evaluate this claim, we
implement our approach in the Graal compiler [4, 13]. We
plan to train our predictors using benchmark suites such
as dacapo [3], scala-dacapo [9], renaissance [8], octane2 and
jetstream3 for an initial evaluation. Regarding performance,
we want to compare the expert-created heuristics in Graal
against our ML predictors with respect to compile time, code
size, and peak performance. For these comparisons we will
conduct experiments with known benchmarks as well as
unknown user programs to also assess the generalization of
both models under comparison.
3.2 Case Study
In this section, we describe a case study on how to improve
an existing compiler optimization with assistance of machine
learning. The targeted optimization is code duplication [5].
Its idea is to copy code at control flow merges into the pre-
decessors blocks, which can enable further optimizations.
Leopoldseder et al. [6] use a trade-off between estimated
code growth versus estimated number of saved cycles to trig-
ger duplication. They created a cost model for annotating
each node of the compiler’s intermediate representation (IR)
with an estimated abstract size and number of execution
cycles. This cost model is hand-crafted by compiler experts
and provides significant performance improvements when
used in heuristics.
Instead of assigning abstract sizes for each node, our ap-

proach uses machine learning to more accurately predict the
code size after compilation. We trained an ANN for learn-
ing the non-linear relation between the number of IR nodes
(features) and the code size (target) after several optimization
phases. Using ML as an assistive technology, speed-ups of
up to seven percent were encountered for some benchmarks.
Currently, our feedback process provides the compiler ex-
pert with compilation units were duplication decisions differ
to gain insight into flaws of the existing cost model. For in-
stance, we were able to find and fix issues where size changes

2https://github.com/chromium/octane
3https://browserbench.org/JetStream/

were underestimated leading to code size bloats (15% for jet-
stream’s towers and containers benchmarks) without any
performance improvements in return.
4 Conclusion
The approach presented in this paper aims to close the gap
between the domains of dynamic compiler optimization and
machine learning in a production environment. It tries to
use both disciplines in a complementary way. Instead of
replacing compiler logic by ML black boxes and give up
on understandability we rather assist existing compiler opti-
mizations and incorporate findings fromML to extend expert
knowledge. The proposed approach in the domain of code
duplication can be seen as one application area. In the future,
we plan to transfer it also to other domains such as inlining
or profile-guided optimizations (PGO).
References
[1] H. Abdi and L. Williams. 2010. Principal Component Analysis. (2010).

https://doi.org/10.1002/wics.101
[2] A. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. 2018.

A Survey on Compiler Autotuning Using Machine Learning. (2018).
https://doi.org/10.1145/3197978

[3] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, E. Moss, A. Phansalkar, D. Stefanović, T.
VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The DaCapo
Benchmarks: Java Benchmarking Development and Analysis. ACM.
https://doi.org/10.1145/1167473.1167488

[4] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and H.
Mössenböck. 2013. Graal IR: An Extensible Declarative Intermediate
Representation.

[5] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H.
Mössenböck. 2018. Dominance-based Duplication Simulation (DBDS):
Code Duplication to Enable Compiler Optimizations. In CGO. https:
//doi.org/10.1145/3168811

[6] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H.
Mössenböck. 2018. Dominance-Based Duplication Simulation (DBDS):
Code Duplication to Enable Compiler Optimizations. In CGO. https:
//doi.org/10.1145/3168811

[7] A. Monsifrot, F. Bodin, and R. Quiniou. 2002. A Machine Learning
Approach to Automatic Production of Compiler Heuristics. In AIMSA.
Springer-Verlag. http://dl.acm.org/citation.cfm?id=646053.677574

[8] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and W.
Binder. 2019. Renaissance: Benchmarking Suite for Parallel Applica-
tions on the JVM. ACM. https://doi.org/10.1145/3314221.3314637

[9] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. 2011. Da Capo Con
Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine. ACM. https://doi.org/10.1145/2048066.2048118

[10] D. Simon, J. Cavazos, C. Wimmer, and S. Kulkarni. 2013. Automatic
Construction of Inlining Heuristics Using Machine Learning. In CGO.
https://doi.org/10.1109/CGO.2013.6495004

[11] V8 JavaScript Compiler 2020. https://github.com/v8/v8
[12] Z. Wang and M. O’Boyle. 2018. Machine Learning in Compiler Opti-

mization. (2018). https://doi.org/10.1109/JPROC.2018.2817118
[13] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,

G. Richards, D. Simon, and M. Wolczko. 2013. One VM to Rule Them
All. In Onward! ACM. https://doi.org/10.1145/2509578.2509581

45

Chapter 5

Predicting Code Size

This chapter includes the paper which presents our first attempts of using machine
learning during dynamic compilation by training a model for predicting the code size
impact of optimizations.

Paper: Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter Mössenböck.
2021. Using machine learning to predict the code size impact of duplication heuristics in
a dynamic compiler. In Proceedings of the 18th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR 2021). Association for Computing
Machinery, New York, NY, USA, 127–135. https://doi.org/10.1145/3475738.3480943

Using Machine Learning to Predict the Code Size
Impact of Duplication Heuristics in a Dynamic

Compiler∗

Raphael Mosaner
raphael.mosaner@jku.at

Johannes Kepler University
Linz, Austria

David Leopoldseder
david.leopoldseder@oracle.com

Oracle Labs
Vienna, Austria

Lukas Stadler
lukas.stadler@oracle.com

Oracle Labs
Linz, Austria

Hanspeter Mössenböck
hanspeter.moessenboeck@jku.at

Johannes Kepler University
Linz, Austria

Abstract
Code duplication is a major opportunity to enable optimiza-
tions in subsequent compiler phases. However, duplicating
code prematurely or too liberally can result in tremendous
code size increases. Thus, modern compilers use trade-offs
between estimated costs in terms of code size increase and
benefits in terms of performance increase. In the context
of this ongoing research project, we propose the use of ma-
chine learning to provide trade-off functions with accurate
predictions for code size impact. To evaluate our approach,
we implemented a neural network predictor in the GraalVM
compiler and compared its performance against a human-
crafted, highly tuned heuristic. First results show promising
performance improvements, leading to code size reductions
of more than 10% for several benchmarks. Additionally, we
present an assistance mode for finding flaws in the human-
crafted heuristic, leading to improvements for the duplication
optimization itself.

CCS Concepts: • General and reference → Performance;
Empirical studies; • Software and its engineering→ Just-
in-time compilers; Dynamic compilers; • Computing
methodologies → Supervised learning by regression;
Neural networks.

Keywords: Code Duplication, Machine Learning, Neural
Networks, Regression, Dynamic Compiler, Optimization,
Heuristics

∗This research project is partially funded by Oracle Labs.

MPLR ’21, September 29–30, 2021, Münster, Germany
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 18th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’21), September 29–30, 2021,
Münster, Germany, https://doi.org/10.1145/3475738.3480943.

ACM Reference Format:
RaphaelMosaner, David Leopoldseder, Lukas Stadler, andHanspeter
Mössenböck. 2021. Using Machine Learning to Predict the Code
Size Impact of Duplication Heuristics in a Dynamic Compiler. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR ’21), Sep-
tember 29–30, 2021, Münster, Germany. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3475738.3480943

1 Introduction
Modern, optimizing compilers are complex software sys-
tems, requiring broad domain expertise to grasp the impacts
of transformations on subsequent optimizations in order
to make right overall decisions. Dynamic compilers, which
use profiling-based speculative optimization and deoptimiza-
tion [33] tend to rely even more on large amounts of metrics
to guide the compilation. These metrics can be CPU features,
code features, timing, memory or profiling data [28]. Using
these metrics, heuristics for selecting optimization parame-
ter values are defined, which include inlining heuristics [2],
loop unrolling factors [26] or cost models [20] for assess-
ing the quality of optimization opportunities. The latter are
especially important when it comes to enabling optimiza-
tions where the reward of a—possibly costly—transformation
might not be evident right away. Code duplication [21] is
such an enabling optimization, which can lead to increased
performance and sometimes even to reduced code size, de-
spite its name. This is only possible by employing highly
tuned human-crafted cost models [20] for estimating the
potential of future optimizations which will be enabled by
duplicated code. However, when done prematurely, duplica-
tion can lead to code size bloats. Thus, trade-offs for code size
and performance have to be made in the process. Trading-
off estimated code size and performance can be tedious, as
the impact of subsequent optimizations has to be taken into
account. We therefore propose the use of machine learning
for predicting the code size impact over several optimization

MPLR ’21, September 29–30, 2021, Münster, Germany R. Mosaner, D. Leopoldseder, L. Stadler, H. Mössenböck

phases. Machine learning can be—and has been [3, 28, 32]—
successfully used to find near-optimal parameters for driving
compiler optimizations. Code size is often considered as an
important success metric [8, 9], however, we are not aware
of research on directly predicting the code size impact in a
dynamic compilation pipeline. This paper contributes the
following:

• A machine learning pipeline for predicting the code
size impact of optimization passes in dynamic compil-
ers.

• An elaborate evaluation of a trained neural network
compared to a human-crafted estimator using the same
input features.

• An outline of an assistance mode, to facilitate finding
bugs in human-crafted heuristics.

The rest of this paper is structured as follows. Section 2
discusses some background on the duplication optimization
as well as related work on machine learning in compilers.
Section 3 presents our approach for using a trained model
for predicting the code size impact and deploying it as part
of a duplication heuristic. Section 4 presents our evaluation
methodology, followed by Section 5 which shows results and
an analysis thereof. Eventually, in Section 6 we point out
where this research is heading, by discussing future work.

2 Background
This ongoing work applies machine learning to assist a code
duplication heuristic [20, 21] by predicting its code size im-
pact. We therefore discuss the code duplication optimization,
initially. Then, related work on machine learning in compil-
ers is outlined.

2.1 Code Duplication
Code duplication, as proposed by Leopoldseder et al. [21],
is an enabling optimization, which copies code at control
flow merges into predecessor blocks to enable subsequent
optimizations. Figure 1 depicts a scenario for applying du-
plication to enable constant folding. The first code snippet
shows a conditional assignment to phi which is used in an
arithmetic operation at the control flow merge (i.e. return).
By pulling the return statement upwards into both branches,
duplicating it in the process, constant folding can be applied
in a later optimization phase. In this toy example, code size
can be even reduced eventually. However, in the majority
of cases, duplication is especially useful for fast-path opti-
mizations, where code size is increased for less important
branches to enable optimizations for the fast-path [21].

Leopoldseder et al. [20] trade-off code size growth and per-
formance gain, by introducing a cost model for graph-based
compiler intermediate program representations (IR) [12, 13].
They assign abstract sizes and cycles to each IR node, mod-
eling the node’s impact on the final compilation in terms of
code size and execution time. Figure 2 shows the IR graph

if (x > 0) {
 phi = x;
} else {
 phi = 0;
}
return phi + 2;

if (x > 0) {
 phi = x;
 return phi + 2;
} else {
 phi = 0;
 return phi + 2;
}

if (x > 0) {
 return x + 2;
} else {
 return 2;
}

1)

2)

3)

Duplication ...

… enables
constant folding

Figure 1. Code duplication as enabling optimization.

for the return-statement from Figure 1 annotated with ab-
stract sizes. When Leopoldseder et al. [21] evaluate a dupli-

Merge

Return

Phi

Add

Const

2
size = 4

Merge

1

10

0

Figure 2. IR graph with assigned node sizes / costs. Upward
edges denote data flow, downward edges denote control flow.

cation opportunity, they simulate enabled optimizations like
constant folding or conditional elimination. Using the cost
model, estimations about code size and execution cycles can
be made for graphs before and after simulated duplication.
A duplication is only performed, if the estimated benefit,
calculated from reduction in cycles, exceeds the cost, which
corresponds to code size increase. Furthermore, a thresh-
old for maximum code size limits overall applicability of
duplication.

2.2 Machine Learning in Compilers
Machine learning has been [3, 19, 28, 32] successfully used
to find near-optimal parameters for driving compiler opti-
mizations. Initially, iterative compilation [5, 19] was used for
re-compiling the same program multiple times with mod-
ified compilation parameters, ultimately converging on a
(near-)optimal compilation strategy. There is extensive work
on finding the best global compiler flag setup for given
programs [3, 32]. By abstracting code to a set of descrip-
tive features, machine learning models have then been in-
troduced to establish a more general relationship between

Using Machine Learning to Predict the Code Size Impact of . . . MPLR ’21, September 29–30, 2021, Münster, Germany

code patterns and optimization parameters [3, 19, 32]. The
model types vary, from decision trees [23, 28], genetic al-
gorithms [7, 8, 30, 31] to neural networks [6, 10, 22, 28].
Especially the use of deep neural networks [10, 19] has al-
lowed outsourcing engineering effort for feature engineer-
ing and feature importance analysis to the model. Thus, the
traditional offline learning pipelines have adopted modern
deep neural networks as their main instrument. However,
a second branch has emerged, incorporating reinforcement
learning [15, 17] in compilers, continuously improving the
compilation process by rewarding advantageous decisions.
Domain-wise, machine learning models for making in-

lining [7, 28] or vectorization decisions [15], finding loop
unrolling factors [23, 30] or tackling the phase ordering prob-
lem [17] have been proposed in the past. Apart from directly
predicting the best optimization decisions, more general ap-
proaches aim towards predicting the performance impact of
any compilation decision [11, 22]. However, while code size
was a target for optimization in the past [8, 9] it has been
neglected in more recent literature [3].

In contrast to the reportedly good results, learning-based
solutions are often employed as a black box, causing their
adoptions by compiler developers to be rather low. Thus,
despite extensive research and successful implementations
in research compilers such as Jikes RVM [7] or MILEPOST
GCC [14], machine learning hardly finds its way into dy-
namic production compilers. To the best of our knowledge,
none of the compilers inHotSpot, JavaScript V8 1 or Graal [34]
are using machine learning to make decisions during dy-
namic compilation. For LLVM, there is a recent approach2
trying to use reinforcement learning to improve heuristics in
a static compilation setup, which is not in production either.

3 Approach
In this section, we present an approach for replacing the
code size estimation heuristic of the GraalVM compiler [34]
with a learned model. As for every machine learning task,
this process can be subdivided into sub-tasks for feature engi-
neering, data generation and model training. In the following,
these components will be discussed, outlining peculiarities
and trade-offs we had to take. At the very end, we cover the
deployment in the compiler.

3.1 Feature Engineering
In amachine learning task, amapping between feature values
and a prediction target value is established via application
of a learning algorithm. The features contain all relevant
data for describing the system or environment at hand and
are used as input for the inference model. In the domain
of compilers, features can be roughly grouped into static,

1https://github.com/v8/v8
2http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html

dynamic, and graph-based features [32]. Due to Graal’s in-
termediate representation (IR) [12, 13], resembling a control-
flow-data-flow graph (CDFG), most features describing a
compilation can be categorized as graph-based. Also the
node counts, used in the existing heuristic, are graph-based
features, which however correlate to static features taken
from source code. For example, the feature #AddNode would
correspond to the number of add operations in the source
code. While having access to more versatile data than the
one used in the human-crafted node cost model, we initially
wanted to experiment with the same features for better com-
parability. Therefore, our feature vectors consist of counters
for over 450 different node types which are currently used in
the Graal IR. This large number of features can be important
when it comes to model size and prediction speed, which
both are crucial factors in a dynamic production compiler.
Thus, depending on the problem context, the number of fea-
tures can be reduced by removing correlating features. Also
principal component analysis (PCA) [1] might be a viable
option to obtain maximum information from a minimum
number of features. PCA achieves this, by projecting data
points from an 𝑛-dimensional space, where n is the num-
ber of features, into an𝑚-dimensional space, with𝑚 < 𝑛,
while keeping the information loss minimal. In our initial
experiments, we refrained from using any feature reduction
measures. Firstly, because we deem a comparison between
a human-crafted and a learned model more interesting if
the same features are used. Secondly, because the use of
PCA, which creates a reduced feature set by linearly com-
bining existing features, would degrade understandability
and transparency of the model. For future work, we also
plan to consider other features than node counts, and will
experiment with feature reduction.

3.2 Data Generation
Generating data for training a machine learning model re-
quires extracting feature values and corresponding target
labels during compilation and execution. Extracting the node
count features is straight-forward, as for each duplication
candidate the exact set of nodes to be duplicated is known.
However, extracting the target label, which is the code size
impact of a duplication, is a tedious task for multiple rea-
sons. The impact of a duplication can only be measured
by comparing—ceteris paribus—two compilations 𝐶 and 𝐶 ′

of the same function which differ only in the duplication
decision for one duplication candidate 𝑋 :

𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 (𝐶𝑑𝑢𝑝𝑋) − 𝑠𝑖𝑧𝑒 (𝐶 ′
¬𝑑𝑢𝑝𝑋) (1)

To create 𝐶 and 𝐶 ′ in this way, full control over the compi-
lation process would be required. This is not given in a dy-
namic compiler as compiler flags typically enable or disable
optimizations only globally [32]. Furthermore, in a dynamic
compiler the compilation process itself is non-deterministic,

MPLR ’21, September 29–30, 2021, Münster, Germany R. Mosaner, D. Leopoldseder, L. Stadler, H. Mössenböck

as compiler and application threads are executed in paral-
lel. Thus, non-determinism can be introduced by timing or
memory thresholds [29] during compilation but also by de-
optimization [16]. Therefore, modifying the compiler to only
locally enable duplication would still result in noisy data
when using Equation (1) for generating impact labels.

To account for the problems regarding non-determinism
and measurement granularity, we decided to use a different
prediction target compared to the node cost model presented
by Leopoldseder et al. [20]. Rather than predicting the code
size impact, which is the code size increase or decrease of
a particular duplication, our model learns the relationship
between the whole graph of a compilation to the final byte
code size. This is only a minor change to the machine learn-
ing model training as discussed in Section 3.3, but removes
the dependency on consistency between data points from
different compilations. Section 3.4 addresses how the trained
model is incorporated in the compiler to predict the impact
of particular optimizations.
In our initial approach, data generation happens at two

stages in the compiler: Node count features for the whole
graph are extracted after the duplication phase and the final
code size is extracted at the end of the compilation pipeline.
This happens in a single compilation pass. For generating
a sufficient amount of data, a set of benchmark suites (cf.
Section 4) was executed to extract node counts and code
sizes, resulting in about 300 000 feature vectors. For future
projects we plan to expand the set of learning data, by com-
piling standard libraries or user programs to train models
for particular domains. Furthermore, we want to explore
ways to reduce compiler non-determinism for generating
compilations which are comparable—ceteris paribus—to each
other.

3.3 Model Training
Initially, we wanted to train a linear regression-like model to
gain insight into weaknesses of the human-crafted heuristics.
The idea was to use learned coefficients to replace existing,
abstract node costs. However, neither linear, nor polynomial
regression models could be trained in a way that the vali-
dation set did not exhibit many outliers. This is because of
subsequent compiler phases which manipulate the graph
and distort any linear relationship, as depicted in Figure 3.
Therefore, we trained an artificial neural network (ANN) for
learning the non-linear relationship between the number of
IR nodes after duplication and the code size after subsequent
optimization phases. As input vector, we used node counts
(features) and byte code size (target) as depicted in Table 1.
The network architecture was fairly simple, with two dense
hidden layers bisecting the number of inputs twice, using
rectified linear unit (ReLu) activation functions. In between
these hidden layers, batch normalization was responsible
for reducing overfitting. We used the Adam optimizer [18]
with a learning rate of 10−3 and mean absolute percentage

Compiler

PhaseX Duplication PhaseZ

Predictor

Machine
Code

influencing compiler phase

Figure 3. Subsequent compiler phases cause the relationship
between compiler graph nodes at duplication time and final
machine code size to be non-linear.

Table 1. Input data for training the machine learning model.
One function corresponds to one data point which holds
node counts (features) and target (code size)

Function #AddNode #IfNode #(. . .)Node size
f1benchX 27 8 . . . 924
f2benchX 16 1 . . . 438
f1benchY 4 0 . . . 102

relative error

Figure 4. Prediction accuracy of the neural network for the
DaCapo benchmark suite.

error (MAPE) as loss function. Figure 4 shows the accuracy
of the resulting neural network, visualized as bar plot. For
this evaluation, the DaCapo [4] benchmark suite was used
for evaluation and therefore excluded from the training. The
x-axis depicts the relative error between predicted and actual
byte code size, which is aggregated in buckets of size 0.1 (or
10%). On the y-axis, the relative number of methods for each
bucket is labeled. Altogether, over 70% of the predictions

Using Machine Learning to Predict the Code Size Impact of . . . MPLR ’21, September 29–30, 2021, Münster, Germany

are less than 10% off from the target label. While this initial
network performed very well, we imagine that a tuning of
hyperparameters and the network architecture can still im-
prove the results. Furthermore, we also want to experiment
with simpler models, like random forest or support vector
regressors and compare their predictive power against the
neural network.

3.4 Deployment
Due to compiler non-determinism and the lack of compa-
rability, as discussed in Section 3.2, we decided to train our
predictor to learn the relationship between node counts from
the total IR graph and the total code size. This design choice
required adaptations in the deployment in the compiler to
fit the model architecture. For each duplication decision our
predictor has to be invoked twice to estimate the code size
impact of a duplication. First, to predict the final code size
when duplication is performed, by adding the counts of all
nodes to be duplicated 𝐷 to the node counts of the whole
graph𝐺 . Second, to predict the code size with the duplication
opportunity being ignored, by using only the graph’s node
counts𝐺 as features. The impact of duplication is calculated
as the difference of both predictions:

𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑖𝑧𝑒 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖𝑧𝑒 (𝐺 + 𝐷) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠𝑖𝑧𝑒 (𝐺)

Using this approach, we can avoid pervasive modifications
in the compiler for the data generation as discussed in Sec-
tion 3.2. Additionally, in contrast to predicting the code size
impact from only the duplicated nodes, we assume that pro-
viding surrounding nodes to the model will improve the
overall accuracy.
During compilation, duplication candidates in GraalVM

are evaluated one after another. Therefore, the node count
features after duplication 𝐷1 are used as input features for
duplication 𝐷2. This ensures an implicit incremental incor-
poration of previous duplication decisions via updated input
features.

Assistance Mode. In addition to replacing the human-
crafted code size estimation, we also created a simple as-
sistance mode. When enabled, the duplication heuristic is
executed twice, once with the node cost model and once
with the neural network predictions in place. If the heuristic
produces different duplication decisions based on the used
predictor, an output is generated to be analyzed by compiler
experts. This output contains information on the location
of the duplication candidate, including function and, more
precisely, start and end of the duplicated regions in the com-
piler graph. Besides, a list of nodes in the duplication region
is provided, to more easily find patterns where one of the
models misperforms.

4 Evaluation Methodology
We claim that machine learning can greatly help to replace
and improve human-crafted estimation heuristics. To eval-
uate this claim, we implemented our approach for predict-
ing byte code size at intermediate points in the compila-
tion pipeline in the GraalVM compiler [12, 34]. Initially, we
trained our predictors using well-known benchmark suites
such as DaCapo [4], Scala-DaCapo [27], Renaissance [24], Oc-
tane3 and Jetstream4. To cope with non-deterministic compi-
lation behavior, we executed each benchmark multiple times,
resulting in over 300 000 data points for training. As training
happens offline, we initially omitted an extensive evaluation
of training cost but plan this for future work.
While we presented the accuracy of our cross-validated

predictor in Section 3.3, a comparison to GraalVM’s predic-
tor is hard to make. The existing node cost model predicts
code size increases by using abstract node costs, whereas
the machine learning predictor works with the code size in
bytes. Therefore, we compared the expert-created heuris-
tics in GraalVM against our machine learning predictors
with respect to compile time, code size, and peak perfor-
mance for newly executed benchmark runs. We are aware
that the same training programs are used for evaluation. Due
to fresh benchmark runs, features for larger compilations
are hardly ever equal to the training data. However, smaller
functions will likely be equal in training and validation data.
In future work, we want to train multiple models more ex-
tensively, to evaluate the performance in GraalVM with a
full cross-validation over all benchmark suites. We want to
point out, that even with cross-validation, many datapoints
for standard library methods will be seen in both training
and validation data.

5 Results
In this section, we present the performance of the GraalVM
compiler with the machine learning model replacing the
human-crafted heuristics. Then, we will outline how we im-
proved the existing heuristics based on the findings provided
by the afore-mentioned assistance mode.

5.1 Machine Learning Predictor in GraalVM
Figure 5 shows our evaluation of run time, code size and
compile time for the Jetstream benchmark suite. Further re-
sults can be found in Appendix A. A condensed overview
of performance metrics can be found in Table 2. Configura-
tion GraalVM depicts the setup with the node cost model
used for predicting the code size impact of duplications.
GraalVM_Fixed presents the version of GraalVM, with ma-
chine learning-induced fixes for the node cost model in place.
Finally, configuration ML uses our neural network predictor
for estimating code size changes. In the following, we will
3https://github.com/chromium/octane
4https://browserbench.org/JetStream/

MPLR ’21, September 29–30, 2021, Münster, Germany R. Mosaner, D. Leopoldseder, L. Stadler, H. Mössenböck

com
pile tim

e
code size

run tim
e

big
fib

.cp
p

co
nta

ine
r.c

pp
dry

.c

flo
at-

mm.c

gc
c-l

oo
ps

.cp
p

ha
sh

-m
ap

n-b
od

y.c

qu
ick

so
rt.c

tow
ers

.c

100%

150%

200%

250%

80%

90%

100%

110%

100.0%
110.0%
120.0%
130.0%
140.0%

GraalVM GraalVM_Fixed ML

Figure 5. Jetstream benchmark suite results. Lower is better.

Table 2. Geometric mean relative differences normalized to config GraalVM. Lower is better.
GraalVM_Fixed ML

Compile Time Code Size Run Time Compile Time Code Size Run Time
DaCapo 1.0328779 1.0242670 0.9889665 1.3657769 1.2544667 1.0126013
Scala-DaCapo 1.0210548 1.0135434 0.9822896 1.3132403 1.0609208 0.8567309
Renaissance 1.0237099 1.0386490 1.0106240 1.3675285 1.2336947 0.9789691
Octane 1.0187792 1.0061069 1.0024897 1.2637224 1.0211426 1.0005519
Jetstream 0.9953381 0.9739181 1.0098880 1.6543358 0.9749413 1.0286236

compare these configurations regarding compile time, run
time and code size.

Compile Time. Especially for compile time, huge over-
heads are to be expected when using a neural network predic-
tor in production. For most benchmarks, this overhead does
not exceed 50%- However there are cases where compile time
is slower by 3x. This factor highly depends on the number
of duplication opportunities in benchmarks, linearly impact-
ing the number of machine learning predictions. For each
duplication, all nodes of the graph have to be counted, in
contrast to just the nodes in the duplicated region. This task
may also be conducted multiple times for one graph. Hence,
there is room for optimization, by caching the whole graph’s
node counts. Additionally, we will cache the prediction re-
sult of the baseline graph to only invoke the neural network
once per duplication. Furthermore, the usage of an external
library along with model loading and executing the forward
pass of the network, exceeds the simplicity of a Java local

sum-of-products in the default node cost model. Mendis et al.
[22] report equally fast prediction speed of their neural net-
work compared to human-crafted heuristics for throughput
prediction. While we do not believe that a deployed neural
network can beat the simple node cost estimation function,
we are certain that optimizing the prediction and deployment
process can yield a lot better compilation performance.

Run Time. For most benchmarks, run time (i.e. peak per-
formance) is not affected by using the neural network. Due
to increased compile time, the number of warmup iterations
had to be increased until a steady state of peak performance
was reached. Larger slowdowns of over 10% can be seen for
hash-map (Jetstream), avrora (DaCapo) or gameboy (Octane).
On the other side, scaladoc (Scala-DaCapo), reactors (Renais-
sance) and typescript (Octane) exhibit notable speedups. Al-
together, no trend towards either better or worse peak per-
formance is visible in our benchmarks. However, we did not
hypothesize about particular run time impacts, as the ML

Using Machine Learning to Predict the Code Size Impact of . . . MPLR ’21, September 29–30, 2021, Münster, Germany

predictor only replaces the code size estimation in the dupli-
cation heuristic. Peak performance impacts can be therefore
also attributed to the interplay between the changed code
size predictor and the remaining heuristics.

Code Size. As expected, impacts on final code size are vis-
ible for most benchmarks. A general trend towards larger
code size can be seen, which implies more liberal duplica-
tion decisions being made with our size predictions in place.
However, thresholds in the duplication heuristic are carefully
crafted and optimized towards the node cost model. Hence,
there are several knobs to be tweaked for better interpreta-
tion of the results. Interestingly, benchmarks like container
and towers (both Jetstream) show huge code size reductions
when using the learned model. This sub-optimal behavior of
duplication led us to implementing the assistance mode.

5.2 Assistance Mode
For some benchmarks, the deployed machine learning model
unveiled potential for improving the existing duplication
heuristic. Using the assistive approach described in Sec-
tion 3.4, we were able to guide compiler experts to find
patterns where duplication in GraalVM misperformed. As a
result, several bugs in the human-crafted duplication heuris-
tic could be found. The biggest being a faulty graph traversal,
rendering duplication impact estimation useless for some
graph patterns. Additionally, the node cost model had some
sub-optimally chosen node sizes. This caused some nodes
(e.g. ReturnNode and loop related nodes) to be deemed less im-
pactful than they actually are. Configuration GraalVM_Fixed
in Figure 5 shows the performance of GraalVM with our
fixes for both, the duplication heuristic and the node costs
in place. Especially for container and towers, significant code
size reductions could be achieved. We received reports that
our fixes in GraalVM also improved performance for some
Sulong [25] benchmarks (fannkuch-redux5 and a set of in-
ternal benchmarks doing decimal number arithmetic) by up
to 15%. This assistance mode can be seen as guided fuzzing,
where promising paths are explored depending on decisions
by a trained machine learning model.

6 Future Work
We presented initial results on replacing human-crafted code
size estimation heuristics with a neural network predictor
in a dynamic, production compiler. In future work, we plan
to improve our approach in following ways.

Feature Selection. For our initial experiments, we used
the same features as the human-crafted code size estimator.
We expect that a more careful feature selection can improve
prediction accuracy even further. Aggregation of node types,
or omitting less relevant node types can reduce the network

5https://benchmarksgame-team.pages.debian.net/benchmarksgame/
description/fannkuchredux.html

complexity due to fewer inputs. Principal component anal-
ysis or similar techniques might be able to trim the feature
space down without degrading performance immensely.

Machine Learning Model. We plan to further experi-
ment with hyperparameter tuning for the used neural net-
work, to find optimal parameters for the number of hidden
layers, neurons per layer or learning rate. Furthermore, we
plan to compare the ANN to other models, such as support
vector or decision trees regression.

Compile Time Overhead. Our evaluation showed that
the use of an external Java library for loading and executing
a stored neural network at run time drastically impacts com-
pile time. We want to reduce this overhead by investigating
its origins, replacing, when necessary the library by a sim-
plified but highly tuned implementation for executing the
forward pass of our neural network solely.

Prediction Target. While we showed initial results for
predicting the code size impact of a duplication, we want
to investigate the performance impact as well. Furthermore,
duplication itself would be interesting to be replaced by a
learned model, rather than just learning sub-heuristics.

Evaluation. For our model evaluation, we used cross-
validation to show the prediction quality. With more time at
hand, we also want to train multiple models for an extensive
leave-one-out cross-validation for the performance evalua-
tion of the deployed model. We might also try to deal with
the standard library functions which are found in multiple
benchmark suites.

7 Conclusion
This paper presents initial research on an approach for using
machine learning to predict impacts of compiler optimiza-
tions on final code size. Therefore, we trained a neural net-
work using aggregated node counts taken from compiler IR
graphs as features. We implemented our approach in the con-
text of code duplication, where we replaced a human-crafted
model in the GraalVM compiler with a neural network pre-
dictor. The neural network transparently learns the impact
of subsequent compiler phases and predicts the size of the
byte code which is eventually emitted by the compiler. Over
70% of our predictions are in a range of 10% around the target
value. We evaluated performance of the deployed predictor
with respect to compile time, code size and run time. While
compile time suffers from additional workload for feature
aggregation and network prediction, run time and code size
showed both improvements and regressions for different
benchmarks. Based on our approach we added an assistance
mode, to find patterns where the human-crafted model mis-
behaved. Using this machine-learning-guided debugging,
improvements in the GraalVM compiler could be deployed.

MPLR ’21, September 29–30, 2021, Münster, Germany R. Mosaner, D. Leopoldseder, L. Stadler, H. Mössenböck

A Appendix
com

pile tim
e

code size
run tim

e

ak
ka

-u
ct al
s

ch
i-s

qu
ar

e
db

-s
ho

ot
ou

t
de

c-
tre

e
do

tty
fin

ag
le

-c
hi

rp
er

fin
ag

le
-h

ttp
fj-

km
ea

ns
fu

tu
re

-g
en

et
ic

ga
us

s-
m

ix
lo

g-
re

gr
es

sio
n

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
ne

o4
j-a

na
lyt

ics
pa

ge
-ra

nk
pa

r-m
ne

m
on

ics
ph

ilo
so

ph
er

s
re

ac
to

rs
rx

-s
cr

ab
bl

e
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le

50%
100%
150%
200%
250%

100%
150%
200%
250%

75%
100%
125%
150%

GraalVM GraalVM_Fixed ML

Figure 6. Renaissance benchmark suite results. Lower is better.

com
pile tim

e
code size

run tim
e

Box
2D

Cod
eL

oa
d

Cryp
to

Delt
aB

lue

Earl
ey

Boye
r

Gam
eb

oy

Man
dre

el

Nav
ier

Stok
es

PdfJ
S

Ray
Tra

ce

Reg
Exp

Rich
ard

s
Spla

y

Typ
es

cri
pt zlib

100%
125%
150%
175%
200%

100%

120%

140%

100%

110%

GraalVM GraalVM_Fixed ML

Figure 7. Octane benchmark suite results. Lower is better.

Using Machine Learning to Predict the Code Size Impact of . . . MPLR ’21, September 29–30, 2021, Münster, Germany

References
[1] H. Abdi and L. Williams. 2010. Principal Component Analysis. WIREs

Comput. Stat. 2, 4 (July 2010), 433–459. https://doi.org/10.1002/wics.
101

[2] M. Arnold, S. Fink, V. Sarkar, and P. Sweeney. 2000. A Comparative
Study of Static and Profile-Based Heuristics for Inlining (DYNAMO
’00). ACM, New York, NY, USA, 52–64. https://doi.org/10.1145/351397.
351416

[3] A. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. 2018.
A Survey on Compiler Autotuning Using Machine Learning. ACM
Comput. Surv. 51, 5, Article 96 (Sept. 2018), 42 pages. https://doi.org/
10.1145/3197978

[4] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Anal-
ysis (OOPSLA ’06). ACM, New York, NY, USA, 169–190. https:
//doi.org/10.1145/1167473.1167488

[5] F. Bodin, T. Kisuki, P. Knijnenburg, M. Boyle, and E. Rohou. 2000.
Iterative compilation in a non-linear optimisation space. Workshop on
Profile and Feedback-Directed Compilation (03 2000).

[6] A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon. 2020. Compiler-
Based Graph Representations for Deep Learning Models of Code (CC
’20). ACM, New York, NY, USA, 201–211. https://doi.org/10.1145/
3377555.3377894

[7] J. Cavazos and M. O’Boyle. 2005. Automatic Tuning of Inlining
Heuristics. In Proceedings of the 2005 ACM/IEEE Conference on Su-
percomputing (SC ’05). IEEE Computer Society, USA, 14. https:
//doi.org/10.1109/SC.2005.14

[8] K. Cooper, P. Schielke, and D. Subramanian. 1999. Optimizing for
Reduced Code Space Using Genetic Algorithms. SIGPLAN Not. 34, 7
(May 1999), 1–9. https://doi.org/10.1145/315253.314414

[9] K. Cooper, D. Subramanian, and L. Torczon. 2002. Adaptive Optimizing
Compilers for the 21st Century. J. Supercomput. 23, 1 (Aug. 2002), 7–22.
https://doi.org/10.1023/A:1015729001611

[10] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. 2017. End-to-
End Deep Learning of Optimization Heuristics (PACT ’17). 219–232.
https://doi.org/10.1109/PACT.2017.24

[11] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, and O. Temam.
2007. Fast Compiler Optimisation Evaluation Using Code-Feature
Based Performance Prediction (CF ’07). ACM, New York, NY, USA,
131–142. https://doi.org/10.1145/1242531.1242553

[12] G. Duboscq, L. Stadler, Th. Würthinger, D. Simon, C. Wimmer, and
H. Mössenböck. 2013. Graal IR: An Extensible Declarative Interme-
diate Representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop.

[13] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and H.
Mössenböck. 2013. An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler (VMIL ’13). ACM, New York,
NY, USA, 1–10. https://doi.org/10.1145/2542142.2542143

[14] G. Fursin, C. Miranda, O. Temam, M. Namolaru, A. Zaks, B. Mendelson,
E. Bonilla, J. Thomson, H. Leather, C. Williams, M. O’Boyle, P. Barnard,
E. Ashton, E. Courtois, and F. Bodin. 2008. MILEPOST GCC: machine
learning based research compiler. (06 2008). https://doi.org/10.1007/
s10766-010-0161-2

[15] A. Haj-Ali, N. Ahmed, T.Willke, Y. Shao, K. Asanovic, and I. Stoica. 2020.
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement
Learning (CGO ’20). ACM, New York, NY, USA, 242–255. https://doi.
org/10.1145/3368826.3377928

[16] U. Hölzle, C. Chambers, and D. Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization (PLDI ’92). ACM, New York, NY,
USA, 32–43. https://doi.org/10.1145/143095.143114

[17] Q. Huang, A. Haj-Ali, W. Moses, J. Xiang, I. Stoica, K. Asanovic, and
J. Wawrzynek. 2019. AutoPhase: Compiler Phase-Ordering for HLS
with Deep Reinforcement Learning (FCCM ’19). IEEE, 308–308.

[18] D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Opti-
mization. International Conference on Learning Representations (12
2014).

[19] H. Leather and C. Cummins. 2020. Machine Learning in Compilers:
Past, Present and Future. In 2020 Forum for Specification and Design
Languages (FDL). 1–8. https://doi.org/10.1109/FDL50818.2020.9232934

[20] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H.
Mössenböck. 2018. Dominance-Based Duplication Simulation (DBDS):
Code Duplication to Enable Compiler Optimizations (CGO ’18). ACM,
New York, NY, USA, 126–137. https://doi.org/10.1145/3168811

[21] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H.
Mössenböck. 2018. Dominance-based Duplication Simulation (DBDS):
Code Duplication to Enable Compiler Optimizations (CGO ’18). ACM,
New York, NY, USA, 126–137. https://doi.org/10.1145/3168811

[22] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin. 2019. Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
4505–4515. http://proceedings.mlr.press/v97/mendis19a.html

[23] A. Monsifrot, F. Bodin, and R. Quiniou. 2002. A Machine Learning
Approach to Automatic Production of Compiler Heuristics (AIMSA ’02).
Springer-Verlag, London, UK, UK, 41–50. http://dl.acm.org/citation.
cfm?id=646053.677574

[24] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder. 2019. Renaissance: Benchmarking Suite for Parallel Ap-
plications on the JVM (PLDI ’19). ACM, New York, NY, USA, 31–47.
https://doi.org/10.1145/3314221.3314637

[25] M. Rigger, M. Grimmer, and H. Mössenböck. 2016. Sulong - Execution
of LLVM-Based Languages on the JVM: Position Paper (ICOOOLPS
’16). ACM, New York, NY, USA, Article 7, 4 pages. https://doi.org/10.
1145/3012408.3012416

[26] V. Sarkar. 2000. Optimized Unrolling of Nested Loops (ICS ’00). ACM,
New York, NY, USA, 153–166. https://doi.org/10.1145/335231.335246

[27] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. 2011. Da Capo Con
Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine (OOPSLA ’11). ACM, New York, NY, USA, 657–676.
https://doi.org/10.1145/2048066.2048118

[28] D. Simon, J. Cavazos, C. Wimmer, and S. Kulkarni. 2013. Automatic
Construction of Inlining Heuristics Using Machine Learning (CGO
’13). IEEE Computer Society, Washington, DC, USA, 1–12. https:
//doi.org/10.1109/CGO.2013.6495004

[29] L. Stadler, G. Duboscq, H. Mössenböck, and T. Würthinger. 2012. Com-
pilation Queuing and Graph Caching for Dynamic Compilers (VMIL
’12). ACM, 49–58. https://doi.org/10.1145/2414740.2414750

[30] M. Stephenson and S. Amarasinghe. 2005. Predicting Unroll Factors
Using Supervised Classification, Vol. 2005. 123– 134. https://doi.org/
10.1109/CGO.2005.29

[31] M. Tartara and S. Crespi Reghizzi. 2013. Continuous Learning of
Compiler Heuristics. ACM Trans. Archit. Code Optim. 9, 4, Article 46
(Jan. 2013), 25 pages. https://doi.org/10.1145/2400682.2400705

[32] Zheng W. and M. O’Boyle. 2018. Machine Learning in Compiler
Optimization. Proc. IEEE 106, 11 (Nov 2018), 1879–1901. https:
//doi.org/10.1109/JPROC.2018.2817118

[33] C. Wimmer, V. Jovanovic, E. Eckstein, and T. Würthinger. 2017. One
Compiler: Deoptimization to Optimized Code (CC 2017). ACM, New
York, NY, USA, 55–64. https://doi.org/10.1145/3033019.3033025

[34] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. 2013. One VM to Rule Them
All (Onward! ’13). ACM, New York, NY, USA, 187–204. https://doi.
org/10.1145/2509578.2509581

55

Chapter 6

Compilation Forking

This chapter includes a very fundamental paper of this thesis, which presents the core
contribution of compilation forking and two case studies of how it can be applied to generate
data for model training.

Paper: Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, Hanspeter
Mössenböck. 2022. Compilation Forking: A Fast and Flexible Way of Generating Data
for Compiler-Internal Machine Learning Tasks. In The Art, Science, and Engineering of
Programming, 2023, Vol. 7, Issue 1, Article 3, pp. 1-29

Note: The last page, which contains a description of the paper’s authors, was omitted for
brevity.

Compilation Forking: A Fast and Flexible Way of Generating Data for
Compiler-Internal Machine Learning Tasks

Raphael Mosanera, David Leopoldsederb, Wolfgang Kislinga, Lukas Stadlerc,
and Hanspeter Mössenböcka
a Johannes Kepler University, Linz, Austria
b Oracle Labs, Vienna, Austria
c Oracle Labs, Linz, Austria

Abstract Compiler optimization decisions are often based on hand-crafted heuristics centered around a few
established benchmark suites. Alternatively, they can be learned from feature and performance data produced
during compilation.

However, data-driven compiler optimizations based on machine learning models require large sets of quality
data for training in order to match or even outperform existing human-crafted heuristics. In static compilation
setups, related work has addressed this problem with iterative compilation. However, a dynamic compiler
may produce different data depending on dynamically-chosen compilation strategies, which aggravates the
generation of comparable data.

We propose compilation forking, a technique for generating consistent feature and performance data from
arbitrary, dynamically-compiled programs. Different versions of program parts with the same profiling and
compilation history are executed within single program runs to minimize noise stemming from dynamic
compilation and the runtime environment.

Our approach facilitates large-scale performance evaluations of compiler optimization decisions. Addition-
ally, compilation forking supports creating domain-specific compilation strategies based on machine learning
by providing the data for model training.

We implemented compilation forking in the GraalVM compiler in a programming-language-agnostic way.
To assess the quality of the generated data, we trained several machine learning models to replace compiler
heuristics for loop-related optimizations. The trained models perform equally well to the highly-tuned compiler
heuristics when comparing the geometric means of benchmark suite performances. Larger impacts on few
single benchmarks range from speedups of 20% to slowdowns of 17%.

The presented approach can be implemented in any dynamic compiler. We believe that it can help to
analyze compilation decisions and leverage the use of machine learning into dynamic compilation.

ACM CCS 2012
Computing methodologies→ Machine learning;
Software and its engineering→ Dynamic compilers; Just-in-time compilers;
General and reference→ Performance;

Keywords Dynamic Compiler, Optimization, Performance, Data Generation, Neural Network

The Art, Science, and Engineering of Programming

Submitted May 2, 2022

Published June 15, 2022

doi 10.22152/programming-journal.org/2023/7/3
© Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and Hanspeter
Mössenböck
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 1, 2023, article 3; 30 pages.

Compilation Forking

1 Introduction

Dynamic optimizing compilers are complex software systems, requiring broad do-
main expertise to grasp the impacts of single optimization transformations on the
overall program performance. Compiler experts typically fine-tune such optimization
decisions based on (micro-)benchmarks, where the compilation process and the run-
time performance are reproducible and stable. This results in a large set of compiler
heuristics which guide the compilation process for real-world programs, by selecting
the optimization parameter values to be used. For example, Leopoldseder et al. [29]
introduce heuristics for estimating code size and performance impacts of compiler
optimizations which are used to choose loop unrolling factors. These heuristics are
typically one-size-fits-all and are optimized for code patterns found in the benchmarks
used for evaluation. Therefore, different users compile their programs with the same
heuristics, which might not be optimal for the particular domain or program. Manually
creating heuristics for different domains or programs is often infeasible.

Data-driven approaches—often using machine learning—have been shown to out-
perform human-crafted heuristics for compiler optimizations [2, 27, 47]. However,
the problem of generating appropriate data for training sophisticated models is often
hard to solve [13]. First, compiler flags are typically not per compilation but global,
which requires creating minimal programs to capture the impact of a compiler flag
in isolation. Second, in a dynamic runtime, compilations are not deterministic and
subject to profiling data or memory usage. Thus, it is often infeasible to create a setup
for a dynamic compiler, where the impact of a single compilation parameter can be
measured. Such measurements however, are required to train a machine learning
model. Previous research has come up with ways to find optimal compilation plans for
single functions in terms of peak performance [5, 24, 27]. However, these approaches
are neither generally applicable nor suited to be used in large-scale data generation
for dynamic compilers. For arbitrary methods, there are two noise factors which
hamper the inference of compiler knowledge based on performance analysis: Firstly,
compilation noise, where the same method can be compiled in different ways. This
is often the case in a dynamic compiler, where compiler threads run in parallel to
the executed program and profiling information is used by the compilation process.
Secondly, usage noise, where—due to different usage scenarios, parameters or global
values—a method’s execution time might have high variance. While related work
ignores one or both of these noise factors, we take both into account to get more
reliable measurements.

We propose compilation forking, a technique for extracting optimization performance
data in a dynamic compilation system for arbitrary programs. Its core idea is to
fork method compilations at points of interest to ensure a common profiling and
compilation history. A point of interest is a point in an ongoing compilation, for example
right before loop unrolling is applied and the compiler has to choose one of multiple
unroll factors. Starting from this common past, each compilation is completed with
a different optimization parameter, and all resulting method versions are executed
alternatingly. This eradicates compilation noise, up to the point of interest, and
averages out usage noise in the long run. The generated data can be used to facilitate

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

quality analysis of compiler optimizations, which can be seen in Figure 1. Therein, the
hand-crafted loop peeling heuristic in the GraalVM [51] compiler is analyzed using
compilation forking. The x-axis shows bins for the relative impact on execution time

Figure 1 Loop peeling in the GraalVM compiler.
when applying the loop peeling transformation. It is scaled logarithmically. Therefore,
values smaller than one indicate a slowdown caused by peeling and values larger
than one a speedup. Outliers are cut off in both directions. The y-axis shows the
number of loop peeling transformations in the respective bins e.g., the bin at the
x-value 10 holds the number of peeling-transformations that led to a speedup of factor
10. The different grey-scales connect the measured performance impacts with the
peeling decision that GraalVM would have made: True positive and true negative
counts indicate that the GraalVM compiler correctly applied or neglected a loop
peeling transformation. False negatives indicate that the compiler did not apply loop
peeling although it would have produced a speedup. False positives indicate that the
compiler applied loop peeling although it resulted in a slowdown. Large impacts of
peeling result from interference with other optimizations (like vectorization) and rare
patterns, where peeling enables removing whole loops. Compilation forking allows
for such an assessment of compilation decisions for arbitrary programs.

Additionally, compilation forking can be used to train machine learning models in
order to replace human-crafted heuristics, which we show in Section 5. In summary,
this paper contributes the following:

Compilation Forking: a novel approach for comparing local optimization decisions
in a dynamic compiler under the same conditions on arbitrary programs.
An elaborate performance measurement strategy that takes compilation noise,
usage noise, and OS noise into account.
A case study where compilation forking data is used to train machine learning
models to predict loop optimization parameters.
An evaluation in which a dynamic highly-optimizing production compiler is matched
by learned models for loop optimizations.

The remainder of this paper is structured as follows. Section 2 gives an overview
on machine learning in compilers and related work on data generation. Section 3
outlines the general process of compilation forking with Section 4 going into details
on implementation specifics. Section 5 summarizes case studies where we trained
machine learning models using data which is generated by compilation forking.
Finally, in Section 6, we evaluate compilation forking in terms of performance and
code size impact. Additionally, we evaluate our machine learning models, to show
that compilation forking indeed produces high-quality data.

Compilation Forking

2 Background

In this section, we briefly provide an overview on machine learning in compilers in
general. Subsequently, we point towards related work on data generation for machine
learning problems in compilers.
2.1 Machine Learning in Compilers
Over the past decades, machine learning models have been shown to outperform
hand-crafted compiler heuristics [2, 19, 27, 47]. Predominantly, learned models aim
to improve the peak performance of compiled programs by guiding the compilation
process. Other success metrics such as memory usage or code size have been opti-
mized in the past as well [10, 11]. However, decreased memory pressure in modern
hardware has led to them being neglected in more recent literature [2], apart from
few exceptions [34].
Machine learning in compilers originates from iterative compilation [5, 27]. Its

idea is to repeatedly compile programs with different sets of compiler parameters
or a different order of compiler phases. There is extensive work on finding the best
global compiler flag setup or phase plan for given programs by using iterative compi-
lation [2, 47]. Furthermore, it can be used for creating a gold standard for evaluating
other models or heuristics [19]. Auto-tuning frameworks, like OpenTuner [1], focus
on reducing the state space for iterative compilations to converge more swiftly on
a near-optimal program compilation. For establishing a more general relationship
between source programs and beneficial compilation parameters, source code has
been abstracted to descriptive features [2, 27, 47]. These features were then used
in machine learning models, ranging from decision trees [33, 43], to genetic algo-
rithms [7, 10, 44, 45], support vector machines [36, 41, 44] and neural networks [6,
12, 24, 32, 43]. Developments in the area of deep neural networks have reduced the
need for extensive feature engineering and pre-processing by having these tasks taken
over by the model itself [12, 27]. Thus, the traditional offline learning pipelines have
adopted neural networks as their main instrument. Recently, research towards online
learning in compilers has increased. Therein, trained models are improved at run time
by rewarding advantageous decisions [21, 23].

Many different compiler optimizations have been investigated with machine learn-
ing models. There are models for performing inlining [7, 43] or vectorization de-
cisions [21], for finding loop unrolling factors [33, 44] or for addressing the phase
ordering [23] or skipping [24] problems. More general models aim towards predicting
the performance impact of arbitrary compiler optimizations, rather than directly
predicting the most beneficial optimization decision [14, 32].

In contrast to the reportedly good results in research, to the best of our knowledge,
none of the optimizing compilers in HotSpot, JavaScript V8 [46] or GraalVM [51] are
using machine learning to make decisions during dynamic compilation. We believe that
compiler experts back off from employing machine learning black boxes in compilers
due to the concern of degrading understandability and maintainability. Thus, despite
successful implementations in research compilers such as Jikes RVM [7] or MILEPOST
GCC [19], machine learning is not found in dynamic production compilers.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

2.2 Related Work

In principle, our work is related to iterative compilation [5, 27] and multi-versioning [9,
26, 52]. However, the goal of compilation forking is not to produce near-optimal perfor-
mance of methods by repeated compilation, but to infer impacts of local optimization
decisions for later analysis. To the best of our knowledge, past work mainly optimized
global compiler flags in iterative compilation for whole programs [19, 43, 44]. For
instance, Stephenson et al. [44] re-run benchmarks multiple times with the loop
unrolling factors set globally to a particular value. They instrument each loop and
compare the performance of loops from different compilations to each other. We
investigate compilation parameters locally and execute different versions alternatingly
in the same program run for better stability.
Fursin et al. [18] created an approach for supporting iterative compilation by

compiling multiple versions of each function, with differing compilation parameters.
However, their work focuses more on finding performance stability patterns, which
allows for making iterative compilation more feasible by reducing the evaluation time
of different versions. They used the EKOPath compiler, which can be used for statically
compiling C, C++ or Fortran programs. Our approach uses a dynamic compilation
system with deoptimization [49] which enables an even more transparent usage by
switching back to one favored version after data generation without interrupting the
program.

Multi-versioning [9, 26, 52] is an approach related to iterative compilation, where
multiple versions of a function or code snippet are deployed into an executable. At
run time, the code which is best optimized towards the current input is selected. Our
goal is neither to have multiple versions deployed into a production system, nor to
create an optimal version during forking. Rather, we create different (non-optimal)
versions to investigate the impact of local optimizations on the function performance
in a fine-grained and consistent manner. Based on the gathered information, either
improvements in the human-crafted heuristics can be deployed or machine learning
models replacing the human-crafted heuristics.

Another research related to our work has been conducted by Sanchez et al. [41] in
the IBM Testarossa JIT compiler. Starting from the conventional compilation plan,
they successively remove optimization phases to compile different versions of a func-
tion. After a number of invocations of the function, re-compilation is triggered and
another version is compiled with a different compilation plan. By measuring execution
times based on processor timestamp counters they try to learn the best compilation
plan for a given method. While their approach was successful for reducing start-up
time, the overall throughput was reduced for most benchmarks. We hypothesize that
their use of overall method execution time (including callees) instead of self time
(excluding callees), the small number of training data points, and the goal of learning
a whole phase plan for an already optimized compiler were the main reasons for
not outperforming the baseline compiler. Thus, we aim to inspect differences arising
from compilations in isolation, with compilation forking enabling us to start from a
common past.

Compilation Forking

Lau et al. [26] also use multi-versioning in the IBM V9 compiler to determine the
fastest of two versions of a function with statistical significance. They discovered that
a large number of function invocations is necessary to correctly identify speedups
between different versions: they argue that at least 1000 invocations are necessary
to reason about differences in the 10% ranges. Second, they verified that operating
system and usage noise indeed average out in the long run. We could confirm both
findings in our own work, yet discovered that the longer an application runs and
the more observations are recorded the better the overall data quality becomes. In
contrast to their work, our system is capable of creating multiple forks per function for
all compiled functions of a program run. This allows our approach to automatically
extract observations, without any interaction or function pre-selection by the user.
This holistic approach is - in part - enabled by our more fine-grained timestamping
instrumentation. We extract self time instead of total time because we want to support
all features of a dynamic execution system like the JVM, this includes deoptimization,
native calls, garbage collections and transitive function calls. For all of the above
"function exits" their total time does not contribute to the actual time spent in a
single function with respect to function local optimization decisions. This means any
knowledge system built upon this data would be biased towards total time, effectively
prohibiting us to later learn any correlation between function local features and the
performance of a single compiled, non-exited, piece of code. The use of total time
limits the scalability of the approach shown in [26]. Additionally, we do not rely on
background worker threads, which might have impacts on the measurements in a
meta-circular environment.
More recently, Cummins et al. [13] addressed the problem of too few available

data from a different angle compared to our approach. In essence, they use data
augmentation by synthesizing programs to enlarge the set of benchmark data and thus
the set of data points being usable for machine learning in compilers. They reported
improvements of over 25% when training a predictive model with the extended,
synthesized data. While they generate artificial benchmarks for collecting data, our
approach enables executing arbitrary user programs for collecting data.
In their recently published work, Mpeis et al. [35] investigated the minimal state

of a program to be captured online to later replay that programs under changed
conditions offline. While our goals to conduct consistent performance measurements
for changed optimization parameters are similar, the approaches are fundamentally
different. Additionally, our work is not restricted to side-effect and I/O-free programs.
The span of related work, ranging back more than two decades is still present in

recent research and shows that (1) automated generation of performance data in a (2)
dynamic compilation system for (3) local optimizations is yet an unsolved problem.

3 Compilation Forking

We propose compilation forking, a technique which allows for flexible data generation
during conventional program execution. Figure 2 shows an abstract depiction of our
system architecture. It combines the process of compilation forking with the use
case of training a machine learning model from the extracted data. The key idea of

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

Graph after
OptX

Compilation Pipeline

Graph after
OptY

OptX
e.g. loop
peeling

OptY

Pa
ra

m
et

er
Se

le
ct

or

OptX
Param = A
e.g. do not peel

OptX
Param = B
e.g. peel

OptA

Features
[#locals, #branches, ...]

Success Metrics

Compilation Forking

Feature
Extractor

OptX Parameter

offline
training

foo0 after
OptY

OptY

foo1 after
OptY

OptY

calls

Execution Engine

foo0

foo1

Recombined
Function

foo

void foo(int n) {
 int i = n
 while(i < GLOBAL) {
 // loop body
 i++
 }
}

Machine Learning
Model

Database

Figure 2 System architecture. Forking happens in the loop peeling phase.

compilation forking is to create multiple versions of a compilation, sharing the same
compilation and profiling history, but going separate ways at a compilation decision
under investigation. Figure 2 shows at the very top the compilation pipeline, where
previous transformations such as OptA are applied identically to all forks. The center
part of the figure depicts the creation of different versions, based on the number of
options for OptX (e.g. loop peeling). In the center right, the different versions are
recombined after they have passed through the remaining compilation pipeline. Each
version is executed transparently until enough data is gathered for statistical analysis
or machine learning (i.e. training or inference).
Executing multiple versions in a single program run has several advantages over

traditional approaches which execute versions in separate runs. In the context of
dynamic compilation, compiled functions depend on profiling information, timing
and memory conditions. These dependencies and the whole compilation history are
automatically taken into account in our approach and thus provide more comparable
results compared to iterative compilation. Additionally, executing multiple versions in
a single run—preferably alternating—reduces requirements regarding CPU stability
and varying background tasks on the execution environment. Lastly, no additional
post-processing of data from multiple runs is necessary; one program run suffices to
produce consistent performance data. Compilation forking is neither restricted to being
used with particular benchmarks, nor to mere execution runs for data generation.

In the following, we present a step-by-step overview of the compiler-agnostic com-
pilation forking approach. As a running example, forking is applied in the loop peeling
phase (c.f. Section 5.1) for function foo, shown in Figure 2. More complex steps and
implementation details are explained in respective subsections of Section 4.

Forking Point Initially, an entry point for compilation forking has to be defined. This
can be before any phase in the compilation pipeline where a compilation decision is
to be made and its impact needs to be analyzed. Additionally, multiple forking points
can be defined, resulting in a nested forking scheme. However, nested forking should

Compilation Forking

be applied with caution, i.e., only for strongly related optimizations to evaluate their
interplay. Otherwise, it could lead to the initial problem of not being able to attribute
performance changes to particular compilation parameters. A method is processed
by all compiler phases preceding the phase at the next forking point, i.e. the forked
phase, resulting in a so-called intermediate compilation.

Listing 1 Fork without peeling.
1 void foo_0(int n) {
2 int i = n
3 while(i < GLOBAL) {
4 // loop body
5 i++
6 }
7 }

Listing 2 Fork with peeling.
1 void foo_1(int n) {
2 int i = n
3 if(i < GLOBAL) {
4 // loop body
5 i++
6 }
7 while(i < GLOBAL) {
8 // loop body
9 i++
10 }
11 }

Listing 3 Recombined forks.
1 void foo(int n) {
2 switch(forkControl % nrForks) {
3 case 0:
4 int i = n
5 while(i < GLOBAL) {
6 // loop body
7 i++
8 }
9 break
10 case 1:
11 int i = n
12 if(i < GLOBAL) {
13 // loop body
14 i++
15 }
16 while(i < GLOBAL) {
17 // loop body
18 i++
19 }
20 break
21 }
22 forkControl++
23 }

Fork Creation At a forking point, the intermediate compilation is duplicated n times,
with n being the number of compilation parameter values to be explored. In general,
compilation parameter values can be either boolean, multi-class nominal or metric.
Thus, the state space needs to be reduced to a manageable size. As loop peeling is a
boolean decision (peel or not peel), we have to copy function foo only once to cover
both scenarios for its while loop. In Section 5.3 we discuss how we used profiling
information to further reduce the state space. After duplication, the forked phase is
applied to each copy with the compilation parameter(s) enumerating the set of values
to explore. This creates n versions of the intermediate compilation, which only differ
in the parameter value for the current phase, but share the same past. For function foo,
two forks—foo_0 and foo_1—are created, which are shown in Listing 1 and Listing 2.
In reality, intermediate compilations would be represented in a compiler-specific
intermediate representation and not in source code.
Feature Extraction We use the term features as set of all relevant information we
have about a compilation at a particular point in the pipeline. This includes both
information on the compilation unit and on the optimization parameter values chosen
for a fork. In a machine learning context, features are the input to a model, which
produces a target value as its prediction. Feature extraction has to happen immediately
before an optimization is applied.
Compilation Pipeline After forking, each fork is run through the remaining com-
pilation pipeline. Parameter values chosen in the forked phase, might have large

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

impacts on subsequent phases. Also factors such as timing or memory usage might
have an impact on the remaining phases, leading to noise in the generated data. Thus,
we would interfere with the nature of a dynamic compiler if we set the remaining
compilation pipeline to a fixed state.
Success Metric Instrumentation After compilation of the forked function has finished,
success metrics for all versions need to be extracted for evaluation. Success metrics
can either be the more prevalent execution time, but also memory usage or code size.
For extracting run-time metrics, we instrument the compiled function to provide the
success metrics during execution. A detailed description of how we extract execution
time is given in Section 4.1.
Fork Recombination Eventually, all compiled forks are recombined to a self-contained
function. It mimics the initially forked function by transparently dispatching to one of
its versions during execution. For the running example, this is schematically depicted
in Listing 3 on source code level, omitting any instrumentation for success metric or
feature extraction. There are several advantages of recombining forks into a single
function rather than having multiple functions at hand. Overall code size and call
overhead are reduced and no undue patches to the deoptimizer and method call logic
have to be made. The code size for forked functions might increase a lot, but as the
control flows of different forks never merge again, no additional pressure is put on
register allocation, which can use the same registers for all forks. A detailed depiction
of the fork recombination process for compiler graphs is presented in Section 4.2.
Fork Execution The execution of forks in the recombined function can follow any
kind of order, depending on the instrumentation parameters. In our reference im-
plementation, the forks are executed alternately, as it is indicated in Listing 3. In
contrast to our approach, Sanchez et al. [41] compile a new version of a function
after enough (sequential) measurements have been taken. By referring to the work of
Lau et al. [26], we believe that our approach will better average out CPU frequency
jitter and impacts of varying parameters. Garbage collection (GC) caused by one fork
execution might impact subsequent fork executions. However, we decided to exclude
GC time at safepoints in our timestamp instrumentation, as GC is hard to be attributed
to certain functions. After execution the information triplet of features, success metric
and compilation decision can be used for training a machine learning model or to
find the best optimization decision ad-hoc. Using deoptimization, this best version can
then replace the instrumented, multi-version function initially created by our forking
approach.
Requirements & Limitations The concept of compilation forking can be implemented
in any compiler where optimizations are applied in a deterministic order. However,
it is advisable that inlining and other optimizations which work across function
boundaries precede the first forking point. Otherwise, the extracted success metric
might be polluted by inlinees. For example, using method self time as presented in
Section 4.1 would only work for optimizations after inlining. The types of possible
optimizations comprise all those which can be decided based on a set of features
observed at the point of an optimization. However, feature extraction and the forking
point have to be defined manually for new optimizations.

Compilation Forking

Compilation forking is not a holistic approach, but rather allows for analyzing the
impact of single or few optimization decisions, where an interplay is expected. For
more holistic approaches we refer to recent related work tackling phase ordering [23]
or skipping [24].

4 Implementation

We implemented compilation forking in the GraalVM [51] compiler, a highly opti-
mizing dynamic compiler which is used in production on millions of devices. Our
implementation is independent from source code as it directly uses Graal’s graph-
based intermediate program representation (IR) [15, 17]. The Graal IR consists of
two directed graphs, one for control flow and the other for data flow. Nodes in the
graph can either have a fixed position in the control flow (fixed nodes) or can be
executed anywhere as long as data dependencies are met (floating nodes). By directly
instrumenting Graal IR, we can profit from the polyglot features provided by GraalVM
and its language implementation framework Truffle [50]. This enables extracting
performance and feature data for any Truffle language, which facilitates training of
language-specific machine learning models without additional effort. We now present
more detailed implementation insights.

4.1 Timestamp Extraction

For most compiler optimizations, the impact on the execution time of the compiled
function is of highest importance. In this section, we show our instrumentation for
extracting self time of methods or code snippets. Self time is the time spent executing
a method excluding time spent "outside" in calls or at safepoints1 [28]. The basic
idea behind this instrumentation is shown as pseudo code in Listing 4 and Listing 5.
Therein, the self time of the current execution is first aggregated locally by excluding
calls (or safepoints). At the end, the current execution time is aggregated to the global,
thread safe storage.

Listing 4 Base function.
1 int bar(int n) {
2
3 int m = n + 1
4
5
6 int res = foo(n, m)
7
8 res = res ∗ 2
9
10
11
12 return res
13 }

Listing 5 Pseudo instrumentation.
1 int bar(int n) {
2 long t = 0, ts1 = getTime()
3 int m = n + 1
4 long ts2 = getTime()
5 t += ts2 − ts1
6 int res = foo(n, m)
7 long ts3 = getTime()
8 res = res ∗ 2
9 long ts4 = getTime()
10 t += ts4 − ts3
11 aggregate("bar", t)
12 return res
13 }

1 Points in the program execution where the GC can be safely run. See https://openjdk.java.
net/groups/hotspot/docs/HotSpotGlossary.html, last accessed on 27 May 2022

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

foo

bar

IR Node
Timestamp
Aggregate locally

Invoke
Subtract “-”

Aggregate globally

Figure 3 Timestamp instrumentation.

The actual instrumentation is added in the graph-based compiler IR, shown in
Figure 3. Rectangular nodes are fixed nodes, in the sense that their order is preserved in
a scheduling process. Circular nodes are nodes for subtraction, which can be executed
out of order if data dependencies are met. Timestamps (black nodes) are added after
each method entry (=first) node and before each method exit (=last) node, which is
shown in the first instrumentation step in Figure 3 (foo). The difference between these
timestamps would correspond to the total execution time of the method. To extract
self time, we add additional timestamps before and after invocations of other methods
and safepoints, which can be seen in Figure 3 (bar). While the instrumentation for
measuring self time is more complex, we want to stress the importance of using it
instead of total time. Otherwise, optimizations in callees would impact the measured
performance of the caller. This could lead to an optimization being falsely identified as
beneficial or harmful for the caller features. In case of across-function optimizations,
like inlining, we can switch to total time to capture the time spent for a whole call.
Each time snippet is calculated by subtracting the start timestamp from the cor-

responding end timestamps (circular nodes). These measurements are summed up
locally (dark grey nodes) for calculating the current method self time. Eventually,
before each control flow sink, e.g. return or exception, the current execution time is
added to the aggregated self time for this fork. This is captured in the white nodes
which also handle the necessary synchronization of that operation. Storing all execu-
tion timestamps for a fork at run time would be infeasible with millions of invocations
of each fork. However, by storing the aggregated run time of a fork together with its
invocation count, we can calculate an average execution time for each fork, similar
to [26]. We assume that—enough invocations provided—different method execution
times due to different values of parameters or globals will average out as proven in [26].
The rationale behind this is the fact, that an optimization can only be considered
beneficial, if the average execution time of the optimized code is improved.

Compilation Forking

Timestamps The timestamp values are extracted using Intel’s rdtscp² instruction.
This instruction ensures that preceding instructions are executed before acquiring a
timestamp. Additionally, we emit lfence instructions after start timestamps and before
end timestamps as shown in Figure 4. lfence instructions ensure that instructions
scheduled after them will not be executed out-of-order before the lfence instruction is
completed. Using the setup as shown in Figure 4 excludes the time for executing the

Timestampend

Timestampstart

Store locally
-

... ...

...

...
time
...

method stack
frame

...

rdtscp
lfence

lfence
rdtscp

Figure 4 RDTSCP and memory fences.

instrumentation logic (e.g. when updating the aggregated local time). Thus, only the
end timestamp call "pollutes" our measurement, which is the minimum unavoidable
noise when timestamping. Nevertheless, the usage of lfence instructions will impact
small or empty measurement regions a lot. In addition, if the performance of different
forks is vastly affected by limiting out-of-order executions via lfence instructions,
measurement noise might occur. Section 6.1 shows the overhead of the timestamp
instrumentation for different types of functions. We use a data filtering to omit these
data points from the result set.

Local Storage For the timestamp instrumentation a local slot in the method’s stack
frame is allocated via instrumentation to track self time across calls and safepoints.
This ensures a thread-safe and recursion-supporting self time measurement. A mea-
surement section can either end because of a control flow sink, e.g. return or exception,
or an excluded operation such as a method call. Then, the method’s stack slot value is
updated by adding the difference of the timestamps from the current region.

Global Storage The global storage holds the aggregated time of all method execu-
tions, which are again subdivided into all forks. It resides in the compiler and is
updated once before a control flow sink is encountered. The update is managed via
GraalVM’s AtomicReadAndAdd operation, which maps to an xadd on Intel and ensures
synchronization.

Outlier Handling During feature extraction, we extract both static information and
profiling information at the time of compilation. Other dynamic information such as

2 https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-
64-benchmark-code-execution-paper.pdf, last accessed on 27 May 2022

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

values of parameters or globals are not extracted in our approach. However, we argue
that performance differences caused by different values of parameters or globals
will cancel out in the long run [26]. However, noise from operating system (OS)
interference still might occur and is hard to avoid in a real-world environment. The
potential sources for OS noise include scheduling, context switches, memory usage and
caching. We empirically checked that this noise is not introduced by our approach or
instrumentation, by experimenting with native C programs, which exhibited similar
OS noise. This experiment confirmed that while most execution times are stable,
outliers from OS noise can exceed the average execution time by orders of magnitude.
This can especially distort results for short-running methods. To counter OS outliers,
we implemented an on-the-fly outlier removal as a transparent, yet aggressive addition
to our timestamp instrumentation. It compares each locally aggregated execution time
to the global average execution time for the fork. Depending on an outlier threshold
local times may be omitted from being added to the global counter. Consistently,
the invocation counter is not increased if an outlier is detected. With this measure,
outliers accounting for sometimes 10% of the total execution time could be filtered
out. However, we have to point out that it is impossible to distinguish between outliers
caused by OS noise and outliers from extreme usage patterns. An single invocation of
a fork with a exceptionally large parameter value would therefore likely be classified
as an outlier. We are also experimenting with the use of a real-time OS to investigate
the outlier behavior in a fully controlled environment, which might be put to use in
the future.

4.2 Fork Recombination

Fork recombination happens at the very end of the compilation pipeline. All compiler

no peel:

peel loop:

compile forks & add timestamping instrument dispatch logic

fork0

foo

fork1

foo
atomicIncr(forkControl)
switch (forkControl % forkCnt) {

case 0: case 1:

}
IR Node
Timestamp
Aggregate locally
Aggregate globally

Figure 5 Fork recombination.

graphs originating from one or multiple forking events are merged into a combined
graph resembling a pseudo-function. Figure 5 depicts the recombination process
for a function where forking has been applied in the loop peeling phase. Initially,
each fork is compiled on its own, including timestamp instrumentation or any other

Compilation Forking

success metric measurement. Eventually, the forks are recombined by copying their
graphs into different branches of a switch. This switch—shown in source code for
simplicity—controls the fork execution. In Figure 5 an alternating execution of the
two forks is enforced. The forkControl variable is stored in the compiler, as discussed
in Section 4.3. During code generation, it has to be ensured that all switch-cases are
aligned identically. Otherwise, varying alignment can cause reproducible performance
differences.

4.3 Data Structures

To avoid pressure on the garbage collector, which could impact the program execution,
we store dynamically extracted performance information in a pre-allocated array of
type long. This array is static, resides in the compiler and is persisted at the time of
success metric collection or at program termination, at the latest. The storage format
is shown in Figure 6. C1 denotes the first forked compilation unit, with C1F1 to C1Fn

C1
fork control

C1F1
invocations

C1F1
total time ...

C1Fn
invocations

C1Fn
total time

C2
fork control ...

constant length NCompiler

Figure 6 Storage format for performance data.

summarizing all its forks. The first field for each compilation unit is the fork control,
which is used to choose the next fork to be executed (see Section 4.2). Right after the
fork control, we store for each fork the number of invocations and the total execution
time. All array indices are compiled as constants in the instrumentation code.

5 Case Studies: Loop Optimizations

In this section, we show case studies on how compilation forking can be used as a
flexible data generation framework for machine learning in compiler optimizations.

5.1 Optimizations

Loop Peeling Loop peeling [3] is a transformation which moves a certain number of
loop iterations in front of or behind the loop by copying the loop body. An example
can be seen in Listing 1 and Listing 2. Peeling can eliminate null-checks within a
loop, which are then performed only once outside the loop. In the GraalVM compiler,
only the first iteration may be peeled. While the impact of loop peeling is generally
considered low, our research with compilation forking showed that interference with
other loop optimizations, especially vectorization, can have significant impacts which
can be seen in Figure 1.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

Table 1 Loop feature overview.

Category Features
General size; depth; isNested; #children; #backedges;

#exits; isVectorizable
Execution frequency; has[Exact/Max]TripCount; canOverflow
Nodes #fixedNodes; #floatingNodes; #[IRNodeType]
Edges #[EdgeType]IntoLoop; #[EdgeType]InLoop;

#[EdgeType]OutOfLoop
Operands #[object/int/float]Stamps; #[volatile/static]FieldAccesses
Parent hasParent; parentSize
Graph size; #loops; maxLoopDepth; #branches; #[IRNodeType]

Loop Unrolling Partial loop unrolling [3] is an optimization where the loop body is
duplicated a certain number of times within the loop. Accordingly, the loop stride
and the loop condition are adapted to fit the enlarged loop body and thus a smaller
number of iterations. Loop unrolling can reduce the overhead of loop condition checks
and can produce larger basic blocks, enabling more optimizations. The number of
duplications is called unroll factor, the choice of which is the key of this optimization.

5.2 Features

In our case study, we focus on two loop-related optimizations — peeling and partial
unrolling — introduced in Section 5.1. These optimizations use features that describe
the loop to be optimized. We decided to base our features on the Graal intermediate
program representation (IR) rather than on source code. Therefore, we can profit
from the GraalVM’s language implementation framework Truffle [50] which enables
executing Java, JavaScript, Python or LLVM [40] programs. Also other approaches [6,
36] have used IRs—mostly LLVM IR—to support multiple source languages. Table 1
gives an overview of the features we extracted for loop-related optimizations. Other
optimizations, for example duplication [30], would need a different set of features to
describe the program parts to be optimized. The total number of potential features is
approximately 1000 before applying any filters. This large number results from the
fact that we use the node counts of the different IR node types (of which there are
more than 450) in the loop and the enclosing graph as features.

5.3 Data Generation

When using compilation forking for loop-related optimizations, we work with the
assumption that loops have no impact on each other when being optimized. This means
that the speedup/slowdown resulting from transforming a loop l1 is independent of a
preceding or succeeding transformation of loop l2. While this is a bold assumption
and might not hold in some cases, interference should be low for non-nested loops.
Our assumption results in a linear dependency between state space size and number
of loops per function. Currently, we reduce the number of forks by selecting the most
frequently executed loops as targets for creating forks. This information is provided
as part of the profiling information provided by GraalVM [16]. Altogether, one fork for

Compilation Forking

each loop and for each optimization parameter value is created, along with a baseline
fork without any optimized loops. For loop peeling, in each fork exactly one loop is
peeled. For loop unrolling, each fork has exactly one loop unrolled with one specific
unroll factor of 2, 4, 8, 16 or 32. The differences between the average execution times
of fork and baseline can be considered as the success metric for the optimization.
We used state-of-the-art industry and research benchmark suites such as DaCapo [4],
DaCapo Scala [42], Renaissance [39] and Octane3 for generating data, as well as a
micro-benchmark suite including more recent JVM features such as lambdas and
streams. To minimize noise, we disabled CPU frequency scaling, hyperthreading and
vendor-specific features which impact performance.

5.4 Data Preprocessing

The implemented outlier removal handles large outliers. Nevertheless, small outliers
still result in noise in the performance measurements. Thus, we apply filters to increase
the consistency of the training dataset and consequently the trained model. Simple
filters reduce noise susceptibility by removing compilations where forks either do not
exceed a minimum number of invocations or a minimum average execution time. We
experimented with filtering out data with very small speedups or slowdowns which
may likely be overshadowed by noise. Additionally, small speedups or slowdowns
indicate that the optimization decision is of not much importance, as the (performance)
outcome is similar in any case. By removing such data, the trained model will be
forced to focus on learning the more important decisions, where performance impacts
are of higher significance. Apart from success metric filters, we also applied filters to
reduce the feature space, i.e., the number of inputs to the model. There are many
features with little information. A feature is deemed more informative the more
different feature values are found throughout the dataset. Many IR nodes appear very
rarely or not at all in whole benchmark suites leading to many IR node count features
being zero for most data points. We conduct a sparsity check to remove such features,
which allows us to heavily reduce the feature space. For loop peeling we reduced the
number of features for model training to 299 and for unrolling to 257. All features are
standardized before use by subtracting their mean and dividing by their standard
deviation. The number of raw and filtered data points for each benchmark suite can
be found in Table 2.

5.5 Model Training

We evaluated a multitude of models with different filtering and hyperparameter setups
by using state-of-the-art machine learning frameworks for Python: PyTorch [37] for
neural networks, scikit-learn [38] for dimensionality reduction, random forests (RF)
and support vector machines (SVM) as well as the XGBoost [8] framework for gradient
boosting. However, shallow models such as logistic regression, decision trees, SVMs

3 https://github.com/chromium/octane, last accessed on 27 May 2022

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

Table 2 Data overview.

peeling unrolling
Suite raw filtered [%] raw filtered [%]

DaCapo 28928 23697 81,9 2901 2083 71,8
DaCapo Scala 47138 40455 85,8 4832 3770 78,0
Renaissance 128541 109945 85,5 11009 8154 74,1

Micros 243434 207200 85,1 30359 22598 74,4
Octane 14079 12949 92,0 707 508 71,9

and RFs were insufficient in terms of prediction accuracy. This led us to different
kinds of fully-connected neural networks (FCNNs). For the network layout, we tried
small dense networks with up to 10 layers and a few million parameters to deeper
residual networks with up to tens of millions of parameters. The latter have been
shown to produce good results for tabular data [20]. Such residual networks with
ten residual blocks and full pre-activation as described by Kaiming He et al. [31]
produced the best results for peeling and unrolling. As optimizer we employed either
plain Adam or AdamW, providing decoupled weight decay [22, 25]. We decided to
train classification models in case of binary decisions such as peeling and a regressor
to predict the speedups of different unroll factors. As loss function we used binary
cross entropy (BCE) for classification and mean squared error (MSE) for regression.
We scaled these losses by a function of the absolute logarithmic speedup and the
aggregated execution time to give more importance to data points with a higher
expected absolute speedup that have more impact on the overall benchmark time. In
the models we use regularization layers and dropout to counter overfitting.

We used a cross-validation approach, where we randomly divided benchmarks into
groups of five. A model is trained on all data except the five benchmarks from the
corresponding evaluation group. Following this approach, we trained 28 models with
identical hyperparameters for peeling and unrolling each. Therefore, each model is
evaluated on truly unseen data in Section 6.2. The networks were trained for 2000
to 3000 epochs with a declining learning rate every 400 epochs. While training, we
used a train-validate-split (90% train, 10% validate) to get insight into the training
progress. The two resulting models are summarized in Figure 7.

ML Model
peeling

299 inputs

…

isCounted
depth

frequency
#AddNode 1 or 0

peel or !peel

ML Model
unrolling

257 inputs

…

#IfNode

1.02
1.04
1.07
1.12
1.20

expected speedups
for unroll factors [2, 4, 8, 16, 32]

1

isCounted
depth

frequency

Figure 7 ML models for peeling and unrolling.

We also experimented with overfitting on single benchmarks, where we used gradi-
ent boosting due to its faster training. For this, we used XGBoost and allowed for an
ample number of estimators (500), which led to an overfitting of up to 98 percent.

Compilation Forking

5.6 Model Evaluation

Evaluating multiple models in the compiler on all benchmarks is a time-consuming
task. However, standard metrics such as accuracy, precision, recall or F1-score do
not reflect the quality of the estimator in terms of total performance. For quickly
selecting which models to test in the compiler, we estimated the performance impact
on benchmark level by employing a custom heuristic.

Based on compilation forking data, this heuristic estimates the execution time etm of
a method m with predicted optimization parameters: We calculate the impacts of each
compilation decision d in m compared to the baseline. Loop related optimizations
yield one decision per loop and each decision can be represented by multiple forks.
For example, in forked loop unrolling each unroll factor is mapped to one fork per
loop. We select for each compilation decision d the fork where the parameter p under
investigation matches the predicted value. Then, we extract the average execution time
for the predicted decision td

p and calculate the difference to the baseline execution
time t b. This difference denotes the expected speedup or slowdown for an optimization
decision. The total execution time impact results from summing up the per-decision
impacts. This total execution time impact is added to the baseline average execution
time t b and scaled by the total invocations i of the method, resulting in the expected
absolute execution time etm. This is summarized in Equation (1).

etm = i

��∑
d

td
p − t b

�
+ t b

�
etm : estimated average execution time of m
i : total invocations of method m
d : optimization decision
td

p : Average execution time
with parameter p in decision d

t b : Baseline of the method

(1)

Finally, we sum up all method execution times to estimate the per benchmark
execution time when using a learned model. When exporting the default compiler
decisions during forking, the same heuristic can be used to calculate the expected
execution time in the current compiler. Additionally, an estimate of the best possible
execution time can be made by using the minimum average execution time for each
decision d. However, the heuristic relies on the assumption that decisions in the same
method do not influence each other. It should therefore be taken as an estimator only.

6 Evaluation

We evaluated our approach twofold. First, we show the performance and code size
impacts of compilation forking itself. Second, we show its applicability, by evaluating
machine learning models, which are trained using the generated data.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

1 int fib(int n) {
2 if (n == 1 || n == 2) {
3 return 1;
4 } else {
5 return fib(n−1) + fib(n−2);
6 }
7 }

1 int sum(int n) {
2 int sum = 0;
3 for (int i = 0; i < n; i++) {
4 sum += i;
5 }
6 return sum;
7 }

de
fau

lt
tim

es
ta

m
ps

ins
tru

m
en

te
d

1
for

k
2

for
ks

3
for

ks
4

for
ks

5
for

ks
10

for
ks

50
for

ks

0

10

20

30

40

O
ve

rh
ea

d
[x

tim
es

”d
ef

au
lt”

]

Execution Time Overhead - Fibonacci

de
fau

lt
tim

es
ta

m
ps

ins
tru

m
en

te
d

1
for

k
2

for
ks

3
for

ks
4

for
ks

5
for

ks
10

for
ks

50
for

ks

1.000

1.002

1.004

1.006

O
ve

rh
ea

d
[x

tim
es

”d
ef

au
lt”

]

Execution Time Overhead - Sum

de
fau

lt
tim

es
ta

m
ps

ins
tru

m
en

te
d

1
for

k
2

for
ks

3
for

ks
4

for
ks

5
for

ks
10

for
ks

50
for

ks

0

50

100

O
ve

rh
ea

d
[x

tim
es

”d
ef

au
lt”

]

Code Size Overhead - Fibonacci

de
fau

lt
tim

es
ta

m
ps

ins
tru

m
en

te
d

1
for

k
2

for
ks

3
for

ks
4

for
ks

5
for

ks
10

for
ks

50
for

ks

0

50

100

O
ve

rh
ea

d
[x

tim
es

”d
ef

au
lt”

]

Code Size Overhead - Sum

Figure 8 Performance and code size impact of forking. Lower is better.

6.1 Compilation Forking

As explained previously, compilation forking allows us to compare different optimiza-
tions based on the same compilation history. The performance of optimized parts is
measured by instrumentation, which is excluded from time measurements. In the pre-
sented approach, the performance data is generated and processed offline, either by
compiler experts analyzing compiler performance or when training machine learning
models. Therefore, we consider compilation forking to be a non-performance-critical
mode, where impacts on total execution time and code size are negligible. Never-
theless, we want to show how the impact on those metrics can vary depending on
the compiled code and the number of forks. Note, that we now evaluate the overall
performance including the instrumentation overhead; the measured and extracted
performance numbers are not impacted by the instrumentation overhead.
Figure 8 shows two functions and the overhead in terms of execution time and

code size. The following configurations were tested, which build on top of each
other: default: GraalVM without any changes; timestamping: timestamp measurement;
instrumentation: outlier removal and invocation counting; forks: a number of identical
forks created from the original function. The first function recursively calculates the n-
th Fibonacci number. A single invocation is executed very fast, but the recursive nature
leads to many calls. The second function calculates a sum in a loop. An invocation
has significantly higher workload, depending on n. Each measurement was executed
50 times with 10000 calls of the function.

Compilation Forking

Performance Figure 8 shows that most overhead is introduced by timestamping
and instrumentation. The relative overhead of timestamping becomes more costly
the smaller the function is and the more calls have to be excluded in the self time
instrumentation. Thus, a slowdown factor of 16 is encountered for function fib, but no
overhead for function sum with its long running loop. The instrumentation overhead
for outlier removal and invocation counting happens only once per method and adds
a constant overhead. Forking introduces a constant slowdown for the dispatch logic,
which is relatively larger in smaller functions. This has also been encountered in
related work [18] and is the reason why smaller functions are removed from the
data set. Creating multiple forks does not impact the execution time. Only in the
configuration with 50 forks a small slowdown is measured for both examples. We
assume that this is because of the immensely increased code size which might impact
caching.

Code Size The impact on code size depends on the number of inserted timestamps
and the number of instrumented control flow sinks. Regarding the number of forks, it
follows a linear pattern, as can be seen in Figure 8.

6.2 Learned Compiler Optimizations

We replaced the hand-crafted heuristics in the GraalVM compiler—currently one of
the highest-optimizing Java compilers⁴—with our trained models to investigate two
hypotheses: First, that compilation forking does not distort the program execution
and that it yields consistent performance results. Second, to investigate how data-
driven optimization approaches perform against hand-crafted heuristics with years of
fine-tuning and compiler expertise.

Our evaluation compares the GraalVM compiler with a compiler version using the
learned predictors. Each evaluation replaces only one loop optimization heuristic by
a learned model to ensure better comparability. We measured run time, code size and
compile time with the former being of most interest as it has been used as a success
metric in model training.

Each optimization is evaluated on five benchmark suites, introduced in Section 5.3,
executed for at least ten times per configuration. To ensure a separation of training
and test data, we deployed multiple models, where each model is tested on five
benchmarks not used in its training. Due to space limitations, we summarize the
performance results per benchmark suite for peeling in Table 3 and for unrolling in
Table 4. The tables contain the number of benchmarks in each suite, the number
of benchmarks where a speedup or a slowdown has been encountered, along with
a maximum speedup and slowdown. For calculating speedups and slowdowns, we
aggregate benchmark runs by calculating geometric means. To ensure statistical
significance, we present the number of significantly faster or slower benchmarks per
suite (#sig) using a Wilcoxon signed-rank test [48] for unpaired data. We avoided a

4 https://renaissance.dev/, last accessed on 27 May 2022

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

standard t-test as we cannot ensure that our data is normally distributed due to noise
in the executions.
For most learned models we can see comparable or slightly worse performance

than for the highly-tuned GraalVM heuristics in terms of geometric means for the
whole benchmark suite run time. The learned peeling strategy summarized in Table 3
seems to peel more often, as the overall code size and compile time are increased. In
single benchmarks, both peeling an unrolling achieve speedups of up to 20% but also
slowdowns of up to 17% .

Table 3 Loop peeling evaluation. Lower is better for geometric means comparison.

Suite Speedup Slowdown Geometric Means ML vs. Heuristics
Name # # #sig max% # #sig max% RunTime CodeSize CompTime
DaCapo 9 2 1 0.698 7 5 6.165 1.020 1.203 1.336

DaCapo Scala 12 1 0 0 11 8 8.023 1.018 1.138 1.207
Renaissance 25 9 1 8.381 16 8 10.231 1.003 1.213 1.295

Micros 74 38 17 20.104 36 16 15.747 0.997 1.182 1.222
Octane 14 5 3 5.668 9 5 2.439 0.998 1.178 1.283

Table 4 Loop unrolling evaluation. Lower is better for geometric means comparison.

Suite Speedup Slowdown Geometric Means ML vs. Heuristics
Name # # #sig max% # #sig max% RunTime CodeSize CompTime
DaCapo 9 1 0 0 8 4 17.637 1.039 1.071 1.150

DaCapo Scala 12 5 2 4.467 7 3 5.890 1.003 1.036 1.078
Renaissance 25 9 1 18.337 16 4 11.598 1.008 1.023 1.081

Micros 74 33 3 9.718 41 6 8.463 1.001 1.061 1.104
Octane 14 4 1 0.765 10 6 5.940 1.011 1.071 1.138

We also analyzed the potential gain of optimizations by explicitly overfitting models
on single benchmarks. Detailed results for loop peeling in the Octane benchmark suite
are shown in Figure 9. It indicates that for many benchmarks, significant speedups

Box
2D

CodeLoad

Cryp
to

Delta
Blue

Earle
yB

oy
er

Gameboy

Mandreel

Nav
ierS

toke
s
PdfJS

Ray
Tra

ce

RegExp

Rich
ards

zlib

zlib
deminifie

d
0.90

0.95

1.00

R
un

tim
e

(n
or

m
al

iz
ed

)

GraalVM
ML

Figure 9 Octane peeling (overfitted). Lower is better.

can be achieved by optimizing loop peeling, which is often considered less important.
However, benchmarks like Richards or Raytrace show slowdowns compared to the
default GraalVM which indicates that the data is not clearly distinguishable using our
features. This was already foreshadowed in the training process, where accuracy for
Richards only converged at 73%.

Compilation Forking

Taking into account that the GraalVM heuristics are tuned towards these bench-
marks, we argue that the performance of the trained models supports our major claim:
High-quality performance data can be generated using compilation forking, which can
facilitate creating machine learning models that match existing compiler heuristics.
Additionally, we found flaws in the GraalVM heuristics for several benchmarks and
could point compiler experts to them.

7 Conclusion

In this paper, we presented compilation forking - a method which brings back itera-
tive compilation into modern times for dynamic compilers. It allows for comparing
different optimization decisions in dynamic compilers based on a common compila-
tion history for arbitrary programs. Instead of re-compiling individual functions and
re-starting the surrounding benchmark program, different versions of functions are
compiled and executed all in one run. We handle uncertainties in the dynamic compi-
lation pipeline, by forking a compilation at a point of interest. We execute different
forks alternatingly, to create a statistically representative average over function calls
with different values of parameters or globals. Thus, we claim to be able to assess
the impact of single compilation decisions accurately. Compilation forking itself is
compiler-agnostic. However, our implementation within the GraalVM compiler allows
for a novel level of programming-language-agnostic applicability. We use its graph-
based compiler-internal program representation for extracting program features. This
enables generating data for any language, supported by GraalVM’s Truffle language
implementation framework.
To verify the quality of our generated data, we trained several machine learning

models for replacing compiler heuristics for loop peeling and unrolling. Achieving
similar performance to one of the fastest JVMs supports our claim that compilation
forking indeed can be used to extract quality performance data and to consistently
compare different optimization decisions in a dynamic compiler Speedups of up
to 20% for single benchmarks unveiled flaws in GraalVM’s heuristics for particular
code patterns. In future work we will shift the focus on improving our machine
learning models further, by employing techniques such as graph neural networks
to better capture graph-based IRs. Furthermore, compilation forking itself provides
opportunities for further research: We plan to investigate the interplay of optimizations
by employing nested forking. Besides that, deoptimization enables us to connect data
generation by compilation forking with using learned or updated ML models in single
runs.

Acknowledgements This research project is partially funded by Oracle Labs.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

References

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. “OpenTuner:
An extensible framework for program autotuning”. In: 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques (PACT). IEEE
Computer Society, 2014, pages 303–315. doi: 10.1145/2628071.2628092.

[2] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. “A Survey on Compiler Autotuning Using Machine Learning”. In: ACM
Comput. Surv. (2018), 96:1–96:42. issn: 0360-0300. doi: 10.1145/3197978.

[3] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Compiler Transfor-
mations for High-Performance Computing”. In: ACM Comput. Surv. (1994),
pages 345–420. issn: 0360-0300. doi: 10.1145/197405.197406.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn
S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot
B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. “The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis”. In: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. OOPSLA ’06. Portland, Oregon, USA: Association for Computing Machin-
ery, 2006, pages 169–190. isbn: 1595933484. doi: 10.1145/1167473.1167488.

[5] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike OBoyle, and Erven Rohou.
“Iterative compilation in a non-linear optimisation space”. In: Workshop on
Profile and Feedback-Directed Compilation (1998). url: https://hal.inria.fr/inria-
00475919/document (visited on 2022-05-27).

[6] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Cas-
trillon. “Compiler-Based Graph Representations for Deep Learning Models of
Code”. In: Proceedings of the 29th International Conference on Compiler Con-
struction. CC 2020. San Diego, CA, USA: Association for Computing Machinery,
2020, pages 201–211. isbn: 9781450371209. doi: 10.1145/3377555.3377894.

[7] John Cavazos and Michael F. P. O’Boyle. “Automatic Tuning of Inlining Heuris-
tics”. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing.
SC ’05. USA: IEEE Computer Society, 2005, page 14. isbn: 1595930612. doi:
10.1109/SC.2005.14.

[8] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: Association
for Computing Machinery, 2016, pages 785–794. isbn: 9781450342322. doi:
10.1145/2939672.2939785.

Compilation Forking

[9] Peng-fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery, and Wei-
chung Hsu. “Dynamic profile driven code version selection”. In: the 11th Annual
Workshop on the Interaction between Compilers and Computer Architecture. 2007.
url: https://www.researchgate.net/publication/228952289_Dynamic_Profile_
Driven_Code_Version_Selection (visited on 2022-05-27).

[10] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. “Optimizing
for Reduced Code Space Using Genetic Algorithms”. In: SIGPLAN Not. (1999),
pages 1–9. issn: 0362-1340. doi: 10.1145/315253.314414.

[11] Keith D. Cooper, Devika Subramanian, and Linda Torczon. “Adaptive Optimiz-
ing Compilers for the 21st Century”. In: J. Supercomput. (2002), pages 7–22.
issn: 0920-8542. doi: 10.1023/A:1015729001611.

[12] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. “End-
to-End Deep Learning of Optimization Heuristics”. In: 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
2017, pages 219–232. doi: 10.1109/PACT.2017.24.

[13] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. “Syn-
thesizing Benchmarks for Predictive Modeling”. In: Proceedings of the 2017
International Symposium on Code Generation and Optimization. CGO ’17. Austin,
USA: IEEE Press, 2017, pages 86–99. isbn: 9781509049318. doi: 10.1109/CGO.
2017.7863731.

[14] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F.P.
O’Boyle, and Olivier Temam. “Fast Compiler Optimisation Evaluation Using
Code-Feature Based Performance Prediction”. In: Proceedings of the 4th Inter-
national Conference on Computing Frontiers. CF ’07. Ischia, Italy: Association
for Computing Machinery, 2007, pages 131–142. isbn: 9781595936837. doi:
10.1145/1242531.1242553.

[15] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian
Wimmer, and Hanspeter Mössenböck. “Graal IR: An Extensible Declarative
Intermediate Representation”. In: Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop. 2013, pages 1–9. url: https://ssw.jku.at/
General/Staff/GD/APPLC-2013-paper_12.pdf (visited on 2022-05-27).

[16] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. “Speculation
without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler”.
In: Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools. PPPJ
’14. Cracow, Poland: Association for Computing Machinery, 2014, pages 187–193.
isbn: 9781450329262. doi: 10.1145/2647508.2647521.

[17] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. “An Intermediate Representation for Spec-
ulative Optimizations in a Dynamic Compiler”. In: Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages. VMIL ’13. Indianapo-
lis, Indiana, USA: Association for Computing Machinery, 2013, pages 1–10. isbn:
9781450326018. doi: 10.1145/2542142.2542143.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

[18] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. “A Practi-
cal Method for Quickly Evaluating Program Optimizations”. In: High Perfor-
mance Embedded Architectures and Compilers. Edited by Nacho Conte Tomband
Navarro, Wen-mei W. Hwu, Mateo Valero, and Theo Ungerer. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pages 29–46. isbn: 978-3-540-32272-6.
doi: 10.1007/11587514_4.

[19] Grigori Fursin, CupertinoMiranda, Olivier Temam,Mircea Namolaru, Ayal Zaks,
Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams,
Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and François Bodin.
“MILEPOST GCC: machine learning based research compiler”. In: Proceedings of
the GCC Developers’ Summit 2008. 2008. url: https://hal.inria.fr/inria-00294704
(visited on 2022-05-27).

[20] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. “Revisit-
ing Deep Learning Models for Tabular Data”. In: CoRR (2021). arXiv: 2106.11959.
url: https://arxiv.org/abs/2106.11959 (visited on 2022-05-27).

[21] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. “NeuroVectorizer: End-to-End Vectorization with
Deep Reinforcement Learning”. In: Proceedings of the 18th ACM/IEEE Interna-
tional Symposium on Code Generation and Optimization. CGO 2020. San Diego,
CA, USA: Association for Computing Machinery, 2020, pages 242–255. isbn:
9781450370479. doi: 10.1145/3368826.3377928.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity Mappings
in Deep Residual Networks”. In: Computer Vision – ECCV 2016. Edited by Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham: Springer International
Publishing, 2016, pages 630–645. isbn: 978-3-319-46493-0. doi: 10.1007/978-3-
319-46493-0_38.

[23] Q. Huang, A. Haj-Ali, W.Moses, J. Xiang, I. Stoica, K. Asanovic, and J.Wawrzynek.
“AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learn-
ing”. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). Los Alamitos, CA, USA: IEEE Computer
Society, 2019, pages 308–308. doi: 10.1109/FCCM.2019.00049.

[24] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis, EunJung Park, and
Johannes Doerfert. “Towards Compile-Time-Reducing Compiler Optimization
Selection via Machine Learning”. In: 50th International Conference on Parallel
Processing Workshop. ICPP Workshops ’21. Lemont, IL, USA: Association for
Computing Machinery, 2021. isbn: 9781450384414. doi: 10 . 1145/3458744 .
3473355.

[25] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: arXiv, 2014. doi: 10.48550/ARXIV.1412.6980. (Visited on 2022-05-27).

[26] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. “Online Per-
formance Auditing: Using Hot Optimizations without Getting Burned”. In:
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’06. Ottawa, Ontario, Canada: Association

Compilation Forking

for Computing Machinery, 2006, pages 239–251. isbn: 1595933204. doi: 10.
1145/1133981.1134010.

[27] Hugh Leather and Chris Cummins. “Machine Learning in Compilers: Past,
Present and Future”. In: 2020 Forum for Specification and Design Languages
(FDL). IEEE Computer Society, 2020, pages 1–8. doi: 10.1109/FDL50818.2020.
9232934.

[28] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas
Würthinger, and Hanspeter Mössenböck. “Fast-Path Loop Unrolling of Non-
Counted Loops to Enable Subsequent Compiler Optimizations”. In: Proceedings
of the 15th International Conference on Managed Languages & Runtimes. Man-
Lang ’18. Linz, Austria: Association for Computing Machinery, 2018. isbn:
9781450364249. doi: 10.1145/3237009.3237013.

[29] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Si-
mon, and Hanspeter Mössenböck. “Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations”. In: Proceedings
of the 2018 International Symposium on Code Generation and Optimization. CGO
2018. Vienna, Austria: Association for Computing Machinery, 2018, pages 126–
137. isbn: 9781450356176. doi: 10.1145/3168811.

[30] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Si-
mon, and Hanspeter Mössenböck. “Dominance-based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations”. In: Proceedings
of the 2018 International Symposium on Code Generation and Optimization. CGO
2018. Vienna, Austria: Association for Computing Machinery, 2018, pages 126–
137. isbn: 978-1-4503-5617-6. doi: 10.1145/3168811.

[31] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”.
In: arXiv, 2017. doi: 10.48550/ARXIV.1711.05101. (Visited on 2022-05-27).

[32] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin.
“Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks”. In: Proceedings of the 36th International Conference on
Machine Learning. Edited by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Proceedings of Machine Learning Research. PMLR, 2019, pages 4505–4515.
url: http://proceedings.mlr.press/v97/mendis19a.html (visited on 2022-05-27).

[33] Antoine Monsifrot, François Bodin, and Rene Quiniou. “A Machine Learning
Approach to Automatic Production of Compiler Heuristics”. In: Proceedings of
the 10th International Conference on Artificial Intelligence: Methodology, Systems,
and Applications. AIMSA ’02. London, UK, UK: Springer-Verlag, 2002, pages 41–
50. isbn: 3-540-44127-1. url: http://dl.acm.org/citation.cfm?id=646053.677574
(visited on 2022-05-27).

[34] Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter Mössen-
böck. “Using Machine Learning to Predict the Code Size Impact of Duplication
Heuristics in a Dynamic Compiler”. In: Proceedings of the 18th ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

MPLR ’21. Association for Computing Machinery, 2021, pages 127–135. isbn:
978-1-4503-8675-3/21/09. doi: 10.1145/3475738.3480943.

[35] Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood, and Hugh Leather. “De-
veloper and User-Transparent Compiler Optimization for Interactive Applica-
tions”. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation. PLDI 2021. Virtual, Canada: As-
sociation for Computing Machinery, 2021, pages 268–281. isbn: 9781450383912.
doi: 10.1145/3453483.3454043.

[36] Eunjung Park, John Cavazos, and Marco A. Alvarez. “Using Graph-Based Pro-
gram Characterization for Predictive Modeling”. In: Proceedings of the Tenth
International Symposium on Code Generation and Optimization. CGO ’12. San
Jose, California: Association for Computing Machinery, 2012, pages 196–206.
isbn: 9781450312066. doi: 10.1145/2259016.2259042.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. “Pytorch: An imperative style, high-performance deep learning library”.
In: Advances in neural information processing systems (2019), pages 8026–8037.
url: https://dl.acm.org/doi/10.5555/3454287.3455008 (visited on 2022-05-27).

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Peter
Prettenhofer, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Ron Weiss,
Vincent Dubourg, et al. “Scikit-learn: Machine learning in Python”. In: the
Journal of machine Learning research (2011), pages 2825–2830. url: https:
//www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (visited on
2022-05-27).

[39] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. “Renaissance: Benchmarking Suite for
Parallel Applications on the JVM”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2019.
Phoenix, AZ, USA: Association for Computing Machinery, 2019, pages 31–47.
isbn: 9781450367127. doi: 10.1145/3314221.3314637.

[40] Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. “Sulong - Exe-
cution of LLVM-Based Languages on the JVM: Position Paper”. In: Proceedings
of the 11th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems. ICOOOLPS ’16. Rome, Italy: Asso-
ciation for Computing Machinery, 2016. isbn: 9781450348379. doi: 10.1145/
3012408.3012416.

[41] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius Pirvu,
and Mark Stoodley. “Using Machines to Learn Method-Specific Compilation
Strategies”. In: Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. CGO ’11. USA: IEEE Computer Soci-
ety, 2011, pages 257–266. isbn: 9781612843568. doi: 10.1109/CGO.2011.5764693.

Compilation Forking

[42] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. “Da Capo
Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual
Machine”. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications. OOPSLA ’11. Port-
land, Oregon, USA: Association for Computing Machinery, 2011, pages 657–676.
isbn: 9781450309400. doi: 10.1145/2048066.2048118.

[43] Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. “Auto-
matic Construction of Inlining Heuristics Using Machine Learning”. In: Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization. CGO ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pages 1–12. isbn: 978-1-4673-5524-7. doi: 10.1109/CGO.2013.6495004.

[44] M. Stephenson and S. Amarasinghe. “Predicting unroll factors using supervised
classification”. In: International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 2005, pages 123–134. doi: 10.1109/CGO.2005.29.

[45] Michele Tartara and Stefano Crespi Reghizzi. “Continuous Learning of Compiler
Heuristics”. In: ACM Trans. Archit. Code Optim. (2013). issn: 1544-3566. doi:
10.1145/2400682.2400705.

[46] V8 JavaScript Compiler. 2021. url: https ://github.com/v8/v8 (visited on
2022-05-27).

[47] Zheng Wang and Michael O’Boyle. “Machine Learning in Compiler Optimiza-
tion”. In: Proceedings of the IEEE (2018), pages 1879–1901. issn: 0018-9219.
doi: 10.1109/JPROC.2018.2817118.

[48] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics
Bulletin (1945), pages 80–83. issn: 00994987. url: http://www.jstor.org/
stable/3001968 (visited on 2022-05-27).

[49] Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger.
“One Compiler: Deoptimization to Optimized Code”. In: Proceedings of the 26th
International Conference on Compiler Construction. CC 2017. Austin, TX, USA:
Association for Computing Machinery, 2017, pages 55–64. isbn: 9781450352338.
doi: 10.1145/3033019.3033025.

[50] Christian Wimmer and Thomas Würthinger. “Truffle: A Self-Optimizing Run-
time System”. In: Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity. SPLASH ’12. Tucson, Ari-
zona, USA: Association for Computing Machinery, 2012, pages 13–14. isbn:
9781450315630. doi: 10.1145/2384716.2384723.

[51] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
“One VM to Rule Them All”. In: Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software. Onward! 2013. Indianapolis, Indiana, USA: Association for Computing
Machinery, 2013, pages 187–204. isbn: 978-1-4503-2472-4. doi: 10.1145/2509578.
2509581.

R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, H. Mössenböck

[52] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. “Space-Efficient
Multi-Versioning for Input-Adaptive Feedback-Driven Program Optimizations”.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’14. Portland, Ore-
gon, USA: Association for Computing Machinery, 2014, pages 763–776. isbn:
9781450325851. doi: 10.1145/2660193.2660229.

85

Chapter 7

Self-optimizing Heuristics

This chapter includes the follow-up paper to the previously introduced compilation forking.
It presents, how compilation forking and de-optimization can be used to optimize machine-
learning-based heuristics at user site.

Paper: Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and
Hanspeter Mössenböck. 2022. Machine-Learning-Based Self-Optimizing Compiler Heuris-
tics. In Proceedings of the 19th International Conference on Managed Programming Languages
and Runtimes (MPLR 2022). Association for Computing Machinery, New York, NY, USA,
98–111. https://doi.org/10.1145/3546918.3546921

Machine-Learning-Based Self-Optimizing Compiler Heuristics∗

Raphael Mosaner
raphael.mosaner@jku.at

Johannes Kepler University
Linz, Austria

David Leopoldseder
david.leopoldseder@oracle.com

Oracle Labs
Vienna, Austria

Wolfgang Kisling
wolfgang.kisling@jku.at

Johannes Kepler University
Linz, Austria

Lukas Stadler
lukas.stadler@oracle.com

Oracle Labs
Linz, Austria

Hanspeter Mössenböck
hanspeter.moessenboeck@jku.at

Johannes Kepler University
Linz, Austria

ABSTRACT
Compiler optimizations are often based on hand-crafted heuristics
to guide the optimization process. These heuristics are designed
to benefit the average program and are otherwise static or only
customized by profiling information. We proposemachine-learning-
based self-optimizing compiler heuristics, a novel approach for fitting
optimization decisions in a dynamic compiler to specific environ-
ments. This is done by updating a machine learning model with
extracted performance data at run time. Related work—which pri-
marily targets static compilers—has already shown that machine
learning can outperform hand-crafted heuristics. Our approach is
specifically designed for dynamic compilation and uses concepts
such as deoptimization for transparently switching between gen-
erating data and performing machine learning decisions in single
program runs. We implemented our approach in the GraalVM, a
high-performance production VM for dynamic compilation. When
evaluating our approach by replacing loop peeling heuristics with
learned models we encountered speedups larger than 30% for sev-
eral benchmarks and only few slowdowns of up to 7%.

CCS CONCEPTS
• General and reference→ Performance; Empirical studies; • Soft-
ware and its engineering→ Just-in-time compilers; Dynamic
compilers; • Computing methodologies → Neural networks.

KEYWORDS
Dynamic Compilation, Optimization, Heuristics, Loop Peeling, Per-
formance, Machine Learning, Neural Networks

ACM Reference Format:
Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler,
and Hanspeter Mössenböck. 2022. Machine-Learning-Based Self-Optimizing
Compiler Heuristics. In Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes (MPLR ’22), September
14–15, 2022, Brussels, Belgium. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3546918.3546921

∗This research project is partially funded by Oracle Labs.

MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the 19th
International Conference on Managed Programming Languages and Runtimes (MPLR
’22), September 14–15, 2022, Brussels, Belgium, https://doi.org/10.1145/3546918.3546921.

1 INTRODUCTION
Dynamic compilation [3] has surpassed static compilation when it
comes to aggressiveness of optimizations and input-specific com-
pilation strategies. This is facilitated by profiling-based specula-
tion [3, 14], where optimization decisions are based on profiling
information which is gathered prior to compilation. For example,
conditional branches can be omitted under the assumption that they
are never entered, if this is indicated by the branch probabilities
measured during profiling [27]. If assumptions are invalidated dur-
ing execution, deoptimization [21, 44] followed by a re-compilation
can produce a new compilation with updated assumptions.

The benefits of such data-driven approaches [27, 44, 46] are ev-
ident but they are still not widely used. State-of-the-art dynamic
compilers [47] still rely heavily on human-crafted heuristics to
guide the optimization process. These heuristics are based on many
years of development effort and compiler expertise to perform
well on the average program. Nevertheless, they mainly reflect the
benchmarks which were used by compiler experts for performance
optimizations and fine-tuning. Tailoring heuristics for specificwork-
loads or hardware environments would be infeasible. Thus, profiling
information is often the only knob in these otherwise static and
one-size-fits-all heuristics.

Another challenge in compiler construction is that optimizations
can have impacts on each other and the trade-offs to be made are
not always clear. For example, a loop peeling transformation [4]
can prevent loop vectorization [4] in a later optimization stage.
Modeling such circumstances in heuristics is hard, and so are deci-
sions which do not negatively affect more important optimizations
later on. The unsolved phase-ordering problem [1, 24] indicates
that optimal holistic compilation decisions are still sought. In the
meantime, carefully designed heuristics consider at least some in-
teractions. For example, the GraalVM compiler [47] checks if a loop
can be vectorized and if so, omits the application of partial loop
unrolling [27]. Again, the assumption that vectorization is more
beneficial than partial unrolling holds only for the average program
and might be invalid for a particularly important user application.

In static compilation, machine learning has already been shown
to outperform human-crafted compiler heuristics [2, 7, 31, 43]. How-
ever, there is significantly less research regarding the usage of ma-
chine learning in dynamic compilation and we are not aware of
any state-of-the-art dynamic compiler that is learning compilation
decisions at run time to fit the current environment.

In order to solve above problems we propose machine-learning-
based self-optimizing compiler heuristics: an end-to-end approach to

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

learn compilation decisions at run time from dynamically extracted
performance metrics. We tune our model in recurring phases, with
the variably sized batch of data collected since the last update or
program start: In the data generation phase we are using a recently
established technique called compilation forking [33], which pro-
duces comparable performance data to determine the impact of
optimization decisions based on observed code features. This data is
used in the learning phase to train a machine learning model, which
can predict the best optimization decision for a given piece of code.
In the prediction phase, this model is deployed and previously com-
piled functions are deoptimized and re-compiled using the model
decisions. Our approach happens dynamically while the program is
being executed. This allows us to customize the compiler to specific
programs or hardware without the assistance of compiler engineers.
Furthermore, our approach can be used to assist compiler engineers
to improve existing heuristics, as proposed in [32].

We implemented our approach in the GraalVM compiler, to
evaluate it in one of the most highly optimizing Java compilers.
Improving GraalVM’s performance provides confidence that our
approach is beneficial for real-world production systems. Further-
more, GraalVM’s polyglot nature [45] is an optimal target for tun-
ing generic, language-agnostic optimizations towards specific lan-
guages, such as JavaScript. This is possible, by directly workingwith
GraalVM’s graph-based intermediate representation (IR) [13, 15]
rather than source code. As a sample optimization for this paper
we chose loop peeling because of its interplay with other optimiza-
tions such as loop inversion, vectorization or guard optimizations.
This interplay often makes designing heuristics for when to apply
peeling a non-trivial task. Our approach is similarly applicable to
any other optimization. For example, we are also experimenting
with optimizations such as unrolling and vectorization which—for
brevity—are not part of this paper. We learned models for each
benchmark in the DaCapo [5], DaCapo Scala [38], JetStream [36]
and Octane1[9] suites. Especially on the JetStream suite, towards
which the GraalVM compiler was not tuned, our approach discov-
ered significant speedups ofmore than 30% formultiple benchmarks.
The largest slowdown over all benchmarks was 7%. Our research
contributes

• a novel approach for learning optimization heuristics at run
time in a dynamic compiler,

• an implementation of this approach in a dynamic compiler
that is among the most highly optimizing Java compilers on
the market

• a quantitative experiment where a loop peeling decision is
learned at run time, which outperforms heuristics by up to
30+% on well-known benchmark suites

• a qualitative experiment where a machine learning model is
improved with new data at run time

The remainder of this paper is structured as follows. Section 2
gives an overview of related work and briefly explains compilation
forking and loop peeling. Section 3 provides an outline of our ap-
proach. Thereafter, Section 4 explains implementation details in
the GraalVM whereas Section 5 summarizes our machine learning
pipeline. Section 6 shows our evaluation methodology and results.
Finally, Section 7 discusses limitations and future work.
1https://github.com/chromium/octane

2 BACKGROUND
We first give an overview of a recently introduced technique called
compilation forking which we use for generating performance data
of different compilation decisions in single program runs. Then, we
discuss related work in the area of machine learning in compilers.
Finally, we give insight into loop peeling which was used as a sample
optimization for evaluating our approach.

2.1 Compilation Forking
Compilation forking [33] is a novel approach for evaluating the
performance impact of local optimization decisions in a dynamic
compiler. It requires only a single program run to evaluate mu-
tually exclusive optimization decisions and can therefore be used
transparently for generating data.

Concepts, such as iterative compilation [6], can hardly be applied
in dynamic compilation where profiling, deoptimization or memory
and timing thresholds may lead to different compilations for the
same function in different runs. Compilation forking faces these
problems by creating copies (called forks) of the state of an interme-
diate compilation right before the optimization—whose impact has
to be measured—is applied. These forks are compiled with different
optimization parameter values and are instrumented for perfor-
mance measurements. This ensures that forks share the same com-
pilation history, up to the point where the measured optimization
is applied. All forks are then recombined into a dispatch function
which transparently executes one fork per invocation. Therefore,
compilation forking is also related to multi-versioning [48], as mul-
tiple versions of the same code are executed in the same run. These
versions are executed alternatingly or in a random order to average
out measurement noise caused by the environment. This reduces
the CPU and OS stability requirements and allows for making
consistent measurements without full control of the surrounding
system. For the remainder of this paper we will use the term fork
as one version of a code produced by compilation forking.

2.2 Related Work
There is an extensive set of research in the domain of machine
learning for compilers [2, 43]. However, our approach combines
multiple aspects which we are not aware of being found together
in a sole research. It (1) learns or (2) updates—(3) at run time—a
machine learning model which replaces an (4) optimization heuristic
in a (5) dynamic compiler. We therefore address related work which
is similar in one of these aspects to our approach.

Our approach is related to iterative compilation [6, 17, 18, 26]
and multi-versioning [16, 25, 48]. In iterative compilation, functions
are compiled multiple times with different sets of optimization pa-
rameters to converge on a near optimal compilation in terms of
execution performance [6, 17]. This is not the goal of our approach
which employs compilation forking [33] to create multiple non-
optimal versions of a function to infer speedups or slowdowns of
local optimization decisions, e.g. peeling of a particular loop. The
knowledge of local optimization decisions is then used to create
a machine learning model. Multi-versioning [16, 25, 48] is an ap-
proach related to iterative compilation, where multiple versions
of a function or code snippet are deployed into an executable. At
run time, the code which is best optimized towards the current

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

input is selected. Our approach differs from multi-versioning as
the versions—forks in our notation—are only alive temporarily dur-
ing data generation before re-compiling a function using learned
decisions.

Tartara and Crespi Reghizzi [40] proposed continuous learning of
compiler heuristics, which is a holistic approach for finding a set of
optimization heuristics in a static compiler. They defined a grammar
from which new heuristics can be inferred based on a pre-defined
set of program features. For the composition of heuristics and a
particular compilation plan they used genetic algorithms [8, 10, 40].
Their approach outperformed GCC O3 on the selected benchmarks
which is impressive keeping its holistic nature in mind. However,
this approach needs a controlled environment andmultiple program
runs to compare the performances and update heuristics in the static
compiler. By utilizing compilation forking [33], our approach is
capable of updating a learned model within a single program run
for any dynamically compiled program. Furthermore, we replace
heuristics by neural networks which are universal approximators
to arbitrary functions compared to a limited search space spanned
by the grammar as defined in [40].

Sanchez et al. [37] used machine learning in the IBM Testarossa
JIT compiler to predict an optimal compiler phase plan. They use
deoptimization to support data generation by re-compiling methods
with different phase plans after a measurement interval has passed.
Our approach executes different method versions alternatingly to
average out measurement noise if the execution environment or
program usage changes over time. Furthermore, Sanchez et al. [37]
followed a traditional approach with a clear distinction between
data generation and model usage, which both happen transparently
in a single program run in our approach. They used support vec-
tor machines[11] in contrast to our research where we propose
updating neural networks incrementally.

Improving loop related compiler optimizations has been the
subject of various research in the past [19, 29, 30, 34, 39]. In a
recent study, Mammadli et al. [30] investigated source-to-source
transformations of loops prior to compilation to improve the com-
pilation stability and the performance of the compiled programs.
They are using a neural network for predicting the performance
impact of source-to-source transformations on a subsequent compi-
lation, which outperforms the used baseline significantly. However,
their approach happens fully offline and provides yet another static
heuristic specific to the compiler configuration which was used for
creating the training data.

Wang et al. [42] present SuperSonic, a tool for automatically tun-
ing hyper-parameters to optimize reinforcement learning (RL) [22]
architectures for the domain of code optimization. After deploy-
ment, the reinforcement learning client can be further refined with
unseen data. However, this task requires the storage of execution
data across multiple runs, compared to the fully transparent model
update in single runs as we propose in our work. SuperSonic out-
performs existing auto-tuners, such as OpenTuner or CompilerGym,
but it is not evident if these frameworks could work in a dynamic
compilation environment.

An additional area of application where we envision our ap-
proach to be useful is in compiler optimization construction and
tuning. Therein, self-optimizing compiler heuristics can be used

offline by compiler engineers to evaluate heuristics under develop-
ment and find weakpoints, without deploying any machine learn-
ing in the final product. This has already been proposed in the
past [32, 41], however, without taking highly domain specific mod-
els into account. Recently, Cummins et al. [12] proposed Compiler-
Gym, a framework opens up compiler research to machine learning
experts. Their framework makes compiler tasks, such as phase or-
dering for LLVM or GCC flag tuning, available to performing AI
research in an easily accessible way. This includes automatically
obtaining benchmark data and providing AI algorithms or APIs for
hyper-parameter tuning.

2.3 Loop Peeling
Loop peeling [4] is a transformation which moves the first or last
few loop iterations out of the loop. Listing 1 shows a loop which
when peeling the first iteration results in the code shown in List-
ing 2.

1 for (in t i = 0 ; i < l i m i t ; i ++) {
2 / / l o o p body
3 }

Listing 1: Loop before peeling the first iteration.

1 i f (0 < l i m i t) {
2 / / l o o p body
3 }
4

5 for (in t i = 1 ; i < l i m i t ; i ++) {
6 / / l o o p body
7 }

Listing 2: Loop after peeling the first iteration.

The if-check might be removed since we know that i==0 at this
point. Depending on the loop body, further optimizations can be
enabled using the knowledge about i. Thus, loop peeling is called
an enabling optimization, as performance improvements are not
directly caused by peeling but indirectly by enabled follow-up opti-
mizations. For example, loop peeling may allow for removing re-
dundant checks or assignments caused by special cases in first loop
iterations. This is shown in Listing 3, where the variable redundant
is assigned in each loop iteration, although being always i-1 after
the first iteration.
1 in t redundant = 0
2 for (in t i = 0 ; i < 1 0 0 ; i ++) {
3 d s t [i] = s r c [i] + redundant ;
4 redundant = i ;
5 }

Listing 3: Loop with redundant variable.

After peeling the loop, the redundant variable can be omitted, as it
can be statically inferred that for i >= 1 its value is always i-1.
The resulting code is shown in Listing 4.

1 d s t [0] = s r c [0] + 0 ;
2 for (in t i = 1 ; i < 1 0 0 ; i ++) {
3 d s t [i] = s r c [i] + (i − 1) ;
4 }

Listing 4: Peeled loop with redundant variable removed.

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

In a dynamic compiler, profiling information and assumptions can
enable more aggressive optimizations after peeling. Listing 5 con-
tains two nested loops, where limit1 and limit2might be subject
to assumptions.
1 for (in t i = 0 ; i < l i m i t 1 ; i ++) {
2 in t r e s u l t = 0 ;
3 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
4 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
5 r e s u l t += . . .
6 }
7 i f (i != 0) p r o c e s s (r e s u l t) ;
8 }

Listing 5: Nested loop.

If limit1 is assumed to be 1, peeling the outer loop would lead to
the whole code being never executed.
1 i f (0 < 1) {
2 in t r e s u l t = 0 ;
3 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
4 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
5 r e s u l t += . . .
6 }
7 i f (0 != 0) p r o c e s s (r e s u l t) ;
8 }
9 for (in t i = 1 ; i < 1 ; i ++) {
10 in t r e s u l t = 0 ;
11 for (in t j = 0 ; j < l i m i t 2 ; j ++) {
12 / / s i d e − e f f e c t − f r e e c ompu t a t i o n s
13 r e s u l t += . . .
14 }
15 i f (i != 0) p r o c e s s (r e s u l t) ;
16 }

Listing 6: Peeled outer loop before further optimizations.

In the peeled code in Listing 6, the compiler can see that the result
computed by the inner loop is never used and can remove the code
that computes it. The remaining loop, starting with i == 1, can be
removed as well, since the upper bound is already reached. Such
cases can have tremendous positive impacts on overall program
performance, but they rare in practice and incorporating them in
static heuristics is difficult. On the other side, loop peeling may also
hinder other optimizations. For example, loop vectorization might
be only applied if there is a certain number of loop iterations in a
counted loop. If this number is decreased by peeling, the beneficial
vectorization of the loop can be prevented. In contrast, peeling a
loop may also enable vectorization. Loop peeling, despite being a
seemingly small transformation, can have large impacts on program
performance due to its nature as an enabling optimization.

In the GraalVM compiler, loop peeling can only remove the first
iteration of a loop. Therefore, for the remainder of this paper, we
will be using peeling synonymously to peeling the first loop iteration.
This implies that peeling decisions are boolean decisions indicating
whether the first iteration should be peeled (=true) or not (=false).

3 APPROACH
In this section, we present machine-learning-based self-optimizing
compiler heuristics. This novel approach facilitates replacing heuris-
tics in a dynamic compiler with learned models which are tuned
with actual data at run time. It therefore automatically considers
peculiarities of the user domain including different hardware or

different types of programs. For small yet static domains, overfit-
ting can be exploited to make optimal decisions, similarly to iter-
ative compilation [6, 17]. However, there are multiple advantages
compared to iterative compilation: First, peculiarities of dynamic
compilation are taken into account by considering the compilation
history when measuring the impact of a compilation decision. Sec-
ond, our approach enables learning local compiler optimization
decisions rather than optimizing compiler flags used for whole
programs. Third, by automatically storing learned decisions in a
model, this model can be re-used for similar domains on the fly.
Using a machine learning model as knowledge base facilitates both
using a pre-trained model and refining the model if new data is
acquired. This is a significant advancement over the state-of-the-
art, where machine learning models are deployed as unchangeable,
static heuristics. Exceptions are found in recent research regarding
reinforcement learning in static compilation [12, 41, 42].

Our approach consists of three phases, two of which correspond
directly to how the dynamic compilation is performed. These are the
data generation phase, the learning phase and prediction phase. They
can be iterated multiple times (see Figure 1), which enables iterative
refinement or adjustment to new data or circumstances. Figure 1
shows the life-cycle of a method foo throughout these phases. It
starts with exploring the impact of different optimization decisions
by employing compilation forking [33] in the data generation phase.
After a learning phase, where either a new model is created or an
existing model is updated, foo is deoptimized and re-compiled with
the model decision replacing the human-crafted heuristic. We now
discuss these phases in detail.

3.1 Data Generation Phase
In the data generation phase, feature data and performance metrics
of program snippets are collected. The performance metrics deter-
mine how a code, which is described by the feature data, needs to be
optimized. Features have to be extracted at compile time whereas
performance metrics need to be measured at run time.

Feature Extraction. In a machine learning context, features are
the input to a model. They describe the code snippet for which an
optimization decision has to be made. Examples of features for the
loop peeling model are the loop depth and the number of branches
in the loop (see Section 5.3). It is essential to extract feature data
at compile time as close to the monitored compilation decision as
possible. For example, when compiling a function with multiple
loops which can be peeled, the feature extraction for loopB needs to
take place after loopA has been processed. Otherwise, the extracted
features for loopB would not account for changes made by peeling
loopA. In related work, feature data is often extracted either before
compilation or before the optimization phase is started. We extract
features during fork creation at compile time and write them to a
shared storage.

Performance Data Extraction. The performance data which is
required to identify beneficial or disadvantageous decisions needs
to be extracted at run time. For extracting comparable performance
measurements from dynamically compiled programs, several chal-
lenges need to be taken into account: (A) The outcome of multiple
decisions needs to be measured in a single program run, (B) the

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

void foofork1 ()
 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
}

void foo ()
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
}

void foo ()
 if (_mode != DATA_GEN) deopt();

 switch (version++ % nrVersions)
 case 0:
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
 break;
 case 1:
 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
 break;
}

void foofork0 ()
 for (int i = 0 ; i < limit; i++) {
 // loop body
 }
} void fooMLPeeling()

 if (0 < limit) {
 // loop body
 }
 for (int i = 1 ; i < limit; i++) {
 // loop body
 }
}

slow

fast

fast

Data Generation Phase Learning
Phase Prediction Phase

warmup (slow) peak performance (fast)

ML
Model

forking

recombination

Figure 1: Overview of our approach applied to an example function.

impact of different decision outcomes needs to be measured based
on the same compilation history prior to the decision, and (C) noise
introduced by different program states or function parameters has
to be handled. These requirements are met by using compilation
forking [33] which we discussed in Section 2.1. It enables extracting
aggregated performance data for multiple versions (forks) of a code
with different compilation decisions and outputs tuples of kind

(𝐼𝐷, 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒, 𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠,𝑚𝑖𝑛,𝑚𝑎𝑥)

They contain how often a fork has been executed (invocations) and
the total execution time (run time) aggregated from all invocations.
min and max are the minimum and maximum execution time from
all invocations of a fork. Aggregated performance data reduces
the statistical capabilities which would be possible if performance
data were stored per invocation. However, forks might be executed
millions of times in one program run. Storing performance data for
each invocation would introduce a huge overhead. The aggregated
data is stored and updated locally in the dynamic runtime until
the data generation phase is ended. The data generation phase
ends after a specified period of time or after enough data has been
collected. The dynamic runtime disables further data generation
and persists the aggregated performance data in a shared storage.

3.2 Learning Phase
In the learning phase, the machine learning pipeline is invoked to
either create a new a machine learning model from the gathered
data or to refine an existing model. When training a new model,
overfitting will likely occur as only data from one program run is
used for training. We discuss overfitting in Section 7.2. The phases
in the machine learning pipeline can be subdivided into data pre-
processing, data filtering and model training. Data pre-processing
associates the feature data with the performance data and creates

a labelled data set. For example, in a loop peeling scenario the
label for each set of features would be either true|1 or false|0
depending on whether peeling the loop described by the given
features reduced the function’s execution time or not. The created
data set can be filtered, to remove data points which are likely
subject to measurement noise or to remove features which should
be excluded from the training process. This is discussed in greater
detail in Section 5.2. If few data points remain after filtering, a
data augmentation phase creates additional data to have enough
data for later training. The model training phase will fit a model of
pre-defined type and structure to the labeled data (see Section 5.4).
Depending on the problem at hand, the machine learning model
produces one or multiple predicted values from the input features.
For example, in a loop peeling scenario the model would output
either a 1 or a 0 as prediction whether to apply peeling or not. In
Section 5.4 we describe the structure and hyper-parameters of the
neural networks which were trained for each benchmark.

A serialized version of this model is written to a shared storage
along with an ordered list of features which need to be used as its
input. The model and the definition of the input features can then
be fetched by the dynamic compiler which switches to prediction
mode. This triggers deoptimization of all functions which were
compiled and instrumented in the data generation phase during
their next execution.

3.3 Prediction Phase
In the prediction phase, the previously trained or refined machine
learning model is deployed in the dynamic compiler. The dynamic
compiler in prediction mode uses the model to replace human-
crafted compilation heuristics or decisions. All functions which
were compiled and instrumented in the data generation phase are
deoptimized and re-compiled using the model. This can be seen in

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

Figure 1. After another—deferred—warm-up period, the program
reaches a stable state of peak performance, where certain optimiza-
tions were subject of learned decisions. The prediction phase can
be used without a preceding model training, if an already trained
model is available before program start.

4 IMPLEMENTATION
We will now present the details of our reference implementation
in the GraalVM [47] and discuss the machine learning pipeline in
Section 5. GraalVM uses a graph-based intermediate representation
(GraalIR) [13, 15] which is a superposition of data flow graph and
control flow graph. By directly operating on the IR graph and by
extracting features from the graph rather than source code, our
implementation can optimize programs from any programming
language which is supported by GraalVM’s polyglot framework
Truffle [45].

4.1 Architecture
Our system architecture for implementing machine-learning-based
self-optimizing compiler heuristics in the GraalVM is shown in Fig-
ure 2. We decided to use a client-server model to retain flexibility of

Observations
● features
● perf. data

Dynamic Runtime

Learning
Server

Model
● ML model
● input features

Shared Storage

Dynamic Compiler

Data Generation Mode

Prediction Mode

Local
Perf. Data
Storage

Mode
Switcher
Thread

Compiled
Methods

features

pe
rfo

rm
an

ce

data

Figure 2: System architecture.

where the potentially GPU-supported training process is executed.
The dynamic runtime is capable of executing dynamically compiled
programs. This includes starting the execution in an interpreter,
invoking the dynamic compiler for hot methods and switching from
interpreted to compiled methods after compilation or vice-versa
after deoptimization. The dynamic compiler applies several opti-
mizations in fixed order to the compiled method before emitting
code. While we were using a method-based compiler, any compiler
which applies optimizations in a deterministic order is suitable for
implementing our approach. In data generation mode, the compiler
emits feature data of program parts that are subject to an optimiza-
tion. Furthermore, it explores multiple optimization variants by
employing compilation forking [33] and extracts performance mea-
surements for each variant. This performance data is stored locally
in the dynamic runtime where total execution time and number
of invocations can be updated efficiently during data generation.
In prediction mode, the compiler uses a machine learning model to
make compilation decisions. The mode switcher thread is a back-
ground thread in the dynamic runtime which triggers the transition

between the two compiler modes. This includes communicating the
feature and performance data to the learning server, awaiting its
response, providing the trained model to the compiler and changing
the compiler mode flag to prediction mode.

We use a shared storage for passing data between the dynamic
runtime and the learning server. If the learning server runs locally,
this is more efficient than sending large files with features or mod-
els. One section in the shared storage holds the feature and the
performance data which was created in the data generation phase.
The other section holds the machine learning model after training
has finished, along with a description of the input features.

The learning server contains a pipeline (Section 5) for training
or updating machine learning models.

4.2 Compilation Forking
In order to reduce the state space when creating forks for peeled
loops, we configured compilation forking to process loops indepen-
dently. This means that for a function with three loops four forks
will be created. One fork has no loop peeled and is considered as
the baseline. In all other forks exactly one loop is peeled. If a fork
outperforms the baseline it is inferred that peeling the respective
loop was beneficial. Peeling of nested loops might violate the as-
sumption of independence and produce inaccurate data points for
training. We accepted this as trade-off to make our approach more
applicable by keeping the state space feasible.

4.3 Deopt Instrumentation
In addition to the instrumentation added for performance mea-
surement and fork recombination, we introduced a check of the
compiler mode flag at the start of each recombined function. This
conditional is only added by the compiler in the data generation
mode. If the compiler mode is set to prediction mode, the function
is deoptimized and re-compiled at its next invocation. This instru-
mentation is added to the compiler IR graph - Figure 1 depicts it in
pseudo-code.

4.4 Mode Switching
In the current implementation, the data generation phase ends
after a fixed period of time, which is specified as dynamic runtime
parameter. As part of future work, we plan to make this fixed time
interval dynamic, based on the progress of the program warm-up.
This can be solved by tracing the compilation frequency, which
is already implemented in the GraalVM compiler. After the data
generation phase has ended, the aggregated performance data is
written into a as json-file and moved to the shared storage. The
feature data has already been written into the shared storage at
compile time.

The learning server is invoked via a socket connection by send-
ing either a learn or an update request. These requests also include
the paths to the feature and performance data. The response con-
tains the path to the model in the shared storage or a forwarded
error message if training was not successful. After changing the
compiler mode to prediction mode, the dynamic compiler replaces
the optimization phase, which supported forking with a version
which fetches the ML model from the shared storage location.

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

5 MACHINE LEARNING FRAMEWORK
According to the state-of-the-art, we implemented our machine
learning pipeline in Python and used PyTorch [35] for training
neural networks. We created an extensible framework to adapt to
new optimizations by configuring the filters and learning pipeline
like a plug-in system. Themodel architecture and hyper-parameters
have been chosen empirically for the experiments conducted in the
paper and might be refined in the future.

5.1 Data Pre-processing
Data Merging. The feature data and the performance data are

written to the shared storage at compile time and at program exe-
cution, respectively. Figure 3 depicts the feature data for a sample
function on the right and the performance data of the same func-
tion and its two forks on the left. During compilation forking an
artificial identifier is introduced for each fork by attaching the fork
number to the original compilation identifier. This is necessary to
distinguish multiple compilations of the same function. The first
step in the pipeline is to merge the feature and the performance
data using this compilation identifier as a key.

 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork0",
 "invocations": "171571",
 "time": "36553828",
 "min": "40",
 "max": "16816"}
 ,
 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork1",
 "invokations": "171562",
 "time": "36945844",
 "min": "40",
 "max": "19416"}

 {"method": "Clazz.method(Clazz.java:123)",
 "compID": "Compilation-10027_Fork0",
 "context": "peeling",
 “features": {
 "size": "26",
 "depth": "1",
 "nrChildren": "0",
 "hasParent": "false",
 "nrBackedges": "1",
 "nrExits": "1",
 "counted": "true",
 "isVectorizable": "true",
 (...)}

Figure 3: Performance data (left) and feature data (right).
Shape Unification. Typical features are the counts of specific

nodes in Graal’s IR, e.g. #AddNodes or #IfNodesInLoop. To reduce
the memory footprint, feature extraction only dumps non-zero
node counts. During data pre-processing, however, the feature
space needs to be expanded to a uniform shape, including also the
features with zero counts.

Labeling. The output produced by compilation forking (see Fig-
ure 3) consists of aggregated execution times for each function. This
success metric has to be turned into labels for training the machine
learning model. For loop peeling, this label is created using the
logarithmic average speedup compared to a baseline where peeling
is disabled for the particular loop. This is shown in the following
equation.

𝑝𝑒𝑒𝑙 =

{
1 𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 ≥ log(1 + 𝜖)
0 𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 < log(1 + 𝜖)

𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = log(𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝑛𝑜𝑃𝑒𝑒𝑙
𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝑝𝑒𝑒𝑙

)

The 𝜖 value can be used to label peeling decisions with only minor
performance benefits as no peel to avoid a code size increase for
very small performance gains. This label strategy implies that we
see loop peeling as a classification problem with only 1 (= peel) or
0 (= no peel) as outputs. It is also possible to model the task as a
regression problem and use the avgSpeedup as label. This would
require a threshold for the predicted speedup in the compiler above

which a peeling is applied. While part of the data pre-processing,
labeling happens after the data filtering. This allows applying filters
based on the measured performance values.

5.2 Data Filtering
Data pre-processing turns the data into a format that is understand-
able for a machine learning model. Data filtering manipulates the
data set to reduce noise and improve the overall data quality and
feature relevance. First, we apply filters which remove observations,
i.e. features and respective labels, as a whole. Then, we apply filters
which remove feature columns for all observations and reduce the
dimensionality of the model input. After all filters have been ap-
plied, data augmentation will increase the remaining data set size
if necessary.

AvgRuntimeFilter. This filter removes data points if the average
run time is below or above a specified threshold. Functions with
a very small run time are more easily subject to noise and are
therefore excluded from training. We did not set an upper limit
for the average run time, as especially long-running functions are
desirable to be optimized.

MinInvocationsFilter. The premise of compilation forking is that,
when executing different optimization variants in one program run,
differences in execution time caused by the environment or param-
eters will cancel out across many invocations. Therefore, functions
with only few invocations are removed as their measurements are
not stable enough.

AbsoluteDifferenceFilter. This filter addresses the label ambiguity
caused by measurement noise. If the absolute difference of the
average execution time of the baseline and the optimized version are
closer than the assumed measurement inaccuracy, the observation
is removed as the classification label cannot be identified correctly.

SkewednessFilter. In the absence of separate performance mea-
surements per execution, we implemented this filter to remove data
points with few large outliers. If removing the maximum execution
time has a noticeable impact on the average execution time, the
filter will remove the data point.

𝑆𝑘𝑒𝑤𝑒𝑑𝑛𝑒𝑠𝑠𝐹𝑖𝑙𝑡𝑒𝑟 =
𝑎𝑣𝑔𝑇𝑖𝑚𝑒

(𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒−𝑚𝑎𝑥
𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠−1)

> 1 + 𝜖

FeatureDiversityFilter. This filter removes features with little in-
formation. A feature is the more informative, the more different
values are found in all observations. Therefore, the filter computes
a histogram of all values for each feature. If the most frequent value
occurs in more than 95% of the data, say, the feature is removed.
This has an especially high impact on rare node types, whose fre-
quencies are zero in most functions. However, the filter can only be
applied when training a new model because the number of features
for an existing model is fixed.

Data Augmentation. Data augmentation is the process of creat-
ing new data points from existing ones. It can be useful if little data
is available in order to reduce overfitting. If our approach is used
to train new models from single program runs, data augmentation
will automatically be applied if the number of data points is below
a threshold. In our domain, the implications of changing feature

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

values are unclear and therefore unsuited for creating correct data
points. Thus, we perform data augmentation by adding data points
with identical features but slightly changed performance values.
This can result in data points with very small performance dif-
ferences to produce new data points with opposite classification
labels.

5.3 Features
Table 1 shows a list of all extracted features for loop peelingwich are
based on the loop features presented in [33]. The features are either
boolean features—with the suffix "?"—or integer features and are
divided into seven categories. Values in brackets are placeholders
and summarize multiple features.

As GraalVM uses a graph-based intermediate representation
(IR) [13, 15] many features are graph-related. For example, the size
of the loop corresponds to the number of its IR nodes and the node
cost [28] is a GraalVM heuristic for estimating the execution time
for a set of nodes. There are six types of edges in the IR which,
together with their origin and destination, lead to 18 edge features.
Due to the large number of different node types, there can be up to
1000 features before reduction. However, many node types appear
very rarely or never in certain phases of the compilation. Thus, the
number of selected features in our experiments varied between 150
and 200, depending on the FeatureDiversityFilter.

Table 1: Features for loop peeling, based on [33]
Loop General Loop Nodes Loop Operands

size #fixedNode #objectStamps
depth #floatingNodes #intStamps
node cost #PhiNodes #floatStamps
#children #ProxyNodes #volatileFieldAccess
#backedges #IfNodes #staticFieldAccess
#exits #[IRNodeType] Loop Edges
counted? Graph #[EdgeType]IntoLoop
can ends safepoint? node cost #[EdgeType]InLoop
vectorizable? #loops #[EdgeType]OutOfLoop

Loop Parent max loop depth Loop Execution
hasParent? #branches frequency
parent size #[IRNodeType] constant max trip count?
parent node cost has exact trip count?

can overflow?

5.4 Model Training
There are many different types of machine learning models and
hyper-parameters for configuring them. In our approach we are
using neural networks, which are easy to update if the Data Gen-
eration Phase and the Learning Phase are executed repeatedly or a
pre-trained model needs to be refined. For the loop peeling mod-
els we used residual neural networks [20] with full pre-activation
residual blocks. Residual networks include skip-connections, which
improves training large networks with little data. Figure 4 depicts
the three types of layers which were used in the networks. The
input block consists of three linear layers followed by rectified
linear units (ReLU). Its number of inputs depends on the feature
reduction process. To counter overfitting, a batch normalization
and a dropout layer (probability = 0.2) are added. The output block

uses four linear layers and produces in case of loop peeling exactly
one output which indicates whether to apply the transformation or
not. Between input and output blocks there are five residual blocks
with full pre-activation, as shown in the top center of Figure 4. The
resulting deep residual neural network and its skip-connections are
summarized in the bottom of Figure 4. While this architecture has
provided good results, we assume that other network structures
could perform similarly. We used Adam [23] as optimizer with a
learning rate of 3e−3 and a weight decay of 5e−5. As loss function
we used binary cross entropy (BCE).

Linear
512

ReLu

ReLu

Dropout
p=0.2

BatchNorm

Linear
1024

BatchNorm

BatchNorm

ReLu

ReLu

Linear
256

Linear
256

ReLu

Dropout

Linear
512

Linear
256

ReLu

ReLu

Linear
256

ReLu

Linear
128

ReLu

Linear
1

input layer (I)
output layer (O)

residual block (R)

I R1 R2 R5 O … residual network

Figure 4: Residual network blocks and network structure.

Loss Scaling. When training a classifier, the actual performance
impact of an optimization is lost after labeling data points with
either peel or noPeel. Thus, equal emphasis is put on learning less
impactful and more impactful decisions, during training. We im-
plemented a scaled version of the binary cross-entropy loss, which
reduces the loss for less important data points and assigns a higher
loss for data points with large performance impacts. This way, we
shift the focus of the trained model towards predicting more im-
pactful decisions correctly, at the cost of incorrectly predicting less
impactful decisions. The scaled BCE loss was implemented using a
double Gaussian curve as a filter function.

6 EVALUATION
We established two major claims regarding our approach, which
are manifested in two hypotheses that need to be tested.

Hypothesis 1. Machine-learning-based self-optimizing compiler
heuristics can improve the peak performance of dynamically com-
piled programs by replacing a compiler heuristic with a learned
model at run time.

Hypothesis 2. Machine-learning-based self-optimizing compiler
heuristics can be used to refine a pre-trained machine learning
model and tune it towards a specific environment during dynamic
compilation.

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

To test these hypotheses, we implemented our approach in the
GraalVM compiler [47], which is among the most highly optimiz-
ing Java compilers on the market2. We replaced the loop peeling
optimization with a learned model and evaluated the two hypothe-
ses using benchmarks from the well-known benchmark suites Da-
Capo [5], DaCapo Scala [38], JetStream [36] and Octane [9]. Hy-
pothesis 1 is addressed in a quantitative experiment in Section 6.2
whereas Hypothesis 2 is addressed in a qualitative experiment in
Section 6.3.

6.1 Experimental Setup
All experiments where executed on an Intel I7-4790K at 4.4GHz
with 20GB main memory and two GeForce GTX 1070, which were
used for model training. Hyper-threading, frequency scaling and
network access were disabled.

Warm-up. The experiments in Section 6.2 and Section 6.3 report
the impact on the benchmark peak performance which excludes
the preceding warm-up time. The total warm-up time is the sum of
1) the data generation time including forking, 2) the model training
time and 3) the warm-up time for re-compiling previously forked
functions using the learned model. Therefore, traditional metrics
for evaluating the program warm-up time, such as the number of
warm-up iterations, are not applicable for our approach. The data
generation time and the model training time are based on hyper-
parameters which can be freely chosen. For example, we defined
the data generation time to be 5 minutes for each DaCapo and Da-
Capo Scala benchmark, 7.5 minutes for each Octane benchmark and
10 minutes for each JetStream benchmark. These numbers were
conservative estimates to maximize the number of methods which
could be compiled with forking and to aggregate plenty of per-
formance measurements for each fork. Automatically minimizing
the data generation time for particular programs based on the pro-
gram warm-up is subject to future work. In addition, we empirically
evaluated that model training would take less than a minute on
our system. Thus, the number of benchmark warm-up iterations
was increased to fit the data generation time, the model training
time and the default warm-up time for the re-compilations. For
reproducibility, Table 2 shows the factors by which the default
GraalVM warm-up was increased in our experiments. For example,
the JetStream hash-map benchmark is very short running and had
to be increased by a factor of 120 to fit the selected data genera-
tion time. Finding a distinct way for evaluating the warm-up and
further minimizing it will be an interesting part of future work,
which is discussed in Section 7.4. Subsequently shown performance
numbers refer to the peak performance of the program which is
measured after the warm-up.

6.2 Training New Models
We investigated Hypothesis 1 with a quantitative experiment us-
ing all benchmarks from suites DaCapo [5], DaCapo Scala [38],
JetStream [36] and Octane [9]. For each benchmark execution we
created a new model for replacing the loop peeling heuristic using
the approach as described in Section 3. Despite measures, such as
batch normalization, the small amount of training data caused some

2https://renaissance.dev/

Table 2: Factors, by which the initial benchmark warm-ups
are increased.

DaCapo D. Scala JetStream Octane
avrora 12 apparat 30 bigfib 45 box2 25 raytrace 25

fop 30 factorie 4 container 12 code-load 25 regexp 4
h2 3 kiama 30 dry 50 crypto 12 richards 25

jython 4 scalac 7 float-mm 80 deltablue 25 splay 25
luindex 25 scaladoc 14 gcc-loops 35 earley-b. 25 typescript 4
lusearch 15 scalap 30 hash-map 120 gbemu 25 zlib 8

pmd 15 scalariform 35 n-body 18 mandreel 12 zlib-dim. 8
sunflow 6 scalatest 18 quicksort 33 navier-st. 12

xalan 18 scalaxb 30 towers 75 pdfjs 8
tmt 10

overfitting. However, for achieving the best performance this can
be desirable.

Figures 5 (JetStream), 6 (DaCapo), 7 (DaCapo Scala) and 8 (Oc-
tane) show the performance impact of our approach (abbreviated as
GraalML) compared to the default GraalVM heuristics. Each bench-
mark has been executed 10 times, creating 10 different models in
the process. All benchmark results are normalized to the median of
the default GraalVM performance and the medians are displayed
in the center of the boxplots.

For the JetStream benchmarks (see Figure 5), six out of nine
benchmarks show significant speedups for the majority of trained
models, with themedian speedup for gcc-loops being close to a factor
of two. Figure 5 indicates that the performance of benchmarks
which are run with our machine-learning-based approach often
have high variance. There are multiple reasons for this instability
when training models with little data. Before training, the extracted
data is randomly split into a training data set and a validation
data set. This random split can affect the model if important data
points are moved to the validation data set and are thus omitted
during training. Overfitting can also cause problems in small data
sets if code is compiled differently in multiple runs. If dynamic
compilation produces different data in the data generation phase
and in the prediction phase, an overfitted model can be confused
by the non-fitting data.

The DaCapo benchmarks (see Figure 6) show similar or slightly
worse performance (up to 4%) for the GraalML configuration com-
pared to the default heuristics. We identified two major reasons for
this. First, DaCapo is one of the benchmark suites which was used
for optimizing the GraalVM heuristics. Thus, the GraalVM heuris-
tics are already tuned towards the DaCapo benchmarks. Second, as
mentioned in Section 4.2, compilation forking is implemented in a
way where loops are assumed to be independent of each other. For
nested loops this assumption might fail and can produce misleading
performance results which is not the case for the default GraalVM
heuristics.

For DaCapo Scala (see Figure 7) one large speedup could be
measured (scalatest) - most other benchmarks perform similarly
to the default heuristics. The slowdown for tmt is caused by the
deoptimization before switching to prediction mode; using the ML
model from the start would lead to similar results as with the default
GraalVM heuristics.

For the Octane suite (see Figure 8) multiple speedups of more
than 5% were measured and few minor slowdowns of less than 2%,
with only typescript having a more significant slowdown of 4%.

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

bigfib.cpp
1.00

1.05

1.10

S
p

ee
du

p

container.cpp

0.98

1.00

1.03

dry.c

1.00

1.50

float-mm.c
1.00

1.02

gcc-loops.cpp
1.00

1.50

2.00

hash-map
1.00

1.20

S
p

ee
du

p

n-body.c
1.00

1.25

1.50

quicksort.c
0.98

1.00

1.03

towers.c
0.90

0.95

1.00 GraalVM Heuristics

GraalML

Figure 5: JetStream peak performance. Higher is better.

avrora

0.98

1.00

S
p

ee
du

p

fop

0.98

1.00

h2

0.98

1.00

1.03

jython

0.90

1.00

luindex

1.00

1.05

lusearch

1.00

1.05

S
p

ee
du

p

pmd
0.98

1.00

sunflow
0.95

1.00

xalan

0.99

1.00

1.01 GraalVM Heuristics

GraalML

Figure 6: DaCapo peak performance. Higher is better.

apparat
0.98

1.00

1.03

S
p

ee
du

p

factorie

0.90

1.00

1.10

kiama
0.95

1.00

scalac
0.98

1.00

1.02

scaladoc
0.98

1.00

1.02

scalap
0.99

1.00

1.01

S
p

ee
du

p

scalariform
0.98

1.00

scalatest
1.00

1.03

1.05

scalaxb

1.00

1.02

tmt

0.95

1.00

Figure 7: DaCapo Scala peak performance. Higher is better.

The presented quantitative experiments have shown that our ap-
proach can outperform existing heuristics with multiple speedups
of more than 30% compared to few regressions of up to 7%. This
supports Hypothesis 1. Especially, if models are trained for single
programs overfitting can produce extremely good results. However,
it also increases the performance variance and reduces general-
ization. This is further discussed in Section 7.2. Our approach is
able to to compete with of one of the most highly optimizing com-
pilers when it comes to benchmarks towards which its heuristics
were specifically tuned. However, automatically learning heuristics
with similar performance for new domains, programs or hardware
without additional engineering effort can be considered a huge
advantage over hand-crafted heuristics.

6.3 Self-optimizing Model
An advantage of our approach over static heuristics—human-crafted
or learned—is the continuous evolution of the model to fit the
current environment or data. We conducted a qualitative exper-
iment to test Hypothesis 2 by showing how a pre-trained model
for one benchmark optimizes itself to fit another benchmark. We
hand-picked two benchmarks from different suites: xalan (DaCapo)
and gcc-loops (JetStream). DaCapo benchmarks are Java programs
whereas JetStream benchmarks are JavaScript programs. Thus, we
expected that a model trained on the one would perform poorly on
the other. All configurations contain 20 measurement runs which
are normalized to the median of the default GraalVM performance
for the respective benchmark.

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

box2d
0.98

1.00

1.03

S
p

ee
du

p

code-load0.90

1.00

crypto

1.00

1.05

deltablue

1.00

1.03

earley-boyer

0.95

1.00

S
p

ee
du

p

gbemu

0.98

1.00

1.03

mandreel
0.98

1.00

1.03

navier-stokes

1.00

1.05

pdfjs

0.98

1.00

S
p

ee
du

p

raytrace
0.95

1.00

regexp

0.90

1.00

richards

0.98

1.00

splay

1.00

1.10

S
p

ee
du

p

typescript
0.95

0.98

1.00

zlib

1.00

1.10

zlib-deminified

1.00

1.10

Figure 8: Octane peak performance. Higher is better.

The left part of Figure 9 compares the xalan benchmark with
the default GraalVM configuration with an implementation of our
approach in Graal (abbreviated as GraalML). For each GraalMLmea-
surement a new new model was created. GraalML produces similar
results for the xalan benchmark compared to the default GraalVM
heuristics. However, the variance of the xalan performance is also
increased because the models are trained in a slightly different way
depending on the extracted data. Figure 10 shows the performance

GraalVM Heuristics GraalML ML (after gcc-loops)

0.98

1.00

1.03

S
p

ee
du

p

xalan

Figure 9: xalan (DaCapo) peak performance. Higher is better.

of the gcc-loops benchmark. For the ML (xalan) configuration the
gcc-loops benchmark was executed in the prediction phase solely,
using each previously trained xalan model in a separate run. This
shows that the xalan models achieve similar performance to the
default GraalVM heuristics for the gcc-loops benchmark. Some of
the xalan models performed significantly better. This can be due to
lucky "guessing" because the gcc-loops data is unknown to themodel.
The third configuration (GraalML) shows the gcc-loops performance
when refining the xalan models at run time using our approach.
The performance improvements for the gcc-loops benchmark are
significant but slightly worse as when training a new model with
data from gcc-loops only (c.f. Figure 5). This suggests thatHypothesis
2 holds in that machine-learning-based self-optimizing compiler

GraalVM Heuristics ML (xalan) GraalML

1.00

2.00

S
p

ee
du

p

gcc-loops

Figure 10: gcc-loops (JetStream) peak performance. Higher
is better.

heuristics can be used to tune pre-trained models to new bench-
marks. For completeness, the model, after being updated with data
from gcc-loops, is tested for the xalan benchmark which is shown
in the right part of Figure 9. The performance of xalan has slightly
increased and the performance variance has decreased. This make
sense as more data was used to train the model. Some data points
extracted from the gcc-loops benchmark may have been useful for
the xalan benchmark as well.

7 DISCUSSION
We have shown that machine-learning-based self-optimizing com-
piler heuristics can improve compiler optimizations in one of the
most highly optimizing Java compilers on the market. This section
addresses limitations which—if not inherent—will be subject to
future work in order to further improve our approach.

7.1 Limitations of Forking
Compilation forking [33] has some limitations. It is not supposed
to be used for exhaustive explorations of large optimization spaces.
For example, a function with 10 consecutive loops would produce
210 = 1024 forks if all combinations of peeling decisions were taken

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

into account. By considering loops in isolation [33] the number
of forks can be reduced to 11 but at the cost of ignoring potential
impacts between multiple peeled loops. Depending on the number
of forks, the enormously increased compile time can be a limiting
factor for our approach as well: If the compile time of a forked
function exceeds the time allocated for the data generation phase,
no performance data is produced for this function. In general, the
program’s run time has to be sufficiently large to profit from our
approach, which makes it especially suited for long-running server
applications.

7.2 Overfitting
To reduce overfitting, our neural networks employ batch normaliza-
tion and dropout layers. Nevertheless, when training a new model
with data from only one program run, overfitting is very likely
to occur. This can be deliberately taken into account, to create an
optimization strategy tailored to a specific program, similar to iter-
ative compilation. However, the potentially overfitted model can
be re-used in future runs of this program, in contrast to iterative
compilation. The more different the data is when incrementally
updating a model, the more general the model becomes with a
potential degradation for some programs compared to an overfit-
ted model. This is seen when comparing the performance of the
gcc-loops benchmark with a model that was only trained with this
benchmark (median speedup factor 1.983, c.f. Figure 5) versus a
model that was trained with xalan data before (median speedup
factor 1.729, c.f. Figure 10). Overfitting is also likely to produce high
performance variance if dynamic compilation compiles functions
differently which results in predicting decisions for unknown data.

7.3 Updating a Model
Section 6.3 shows how an existing model can be updated with the
newly fetched data as shown in Section 6.3. Long-running programs
can also contain multiple learning phases to adapt to a changing
environment. The new data is automatically pre-processed to match
the model’s feature set, which is fixed after the first training phase.
This can lead to important features in the new data being ignored.
It might therefore be beneficial to evaluate the importance of the
features to be omitted and to automatically train a new model if
necessary.

The more data an existing model has seen, the less it changes
with new data. For updating a model more aggressively, the server
can be configured to adapt the learning rate in order to escape
(local) optima derived from old data.

7.4 Warm-up
As discussed in Section 6.1, evaluating the warm-up of our approach
is different from traditional work in compilers. The total warm-up
time is the sum of 1) the data generation time including forking, 2)
the model training time and 3) the warm-up time for re-compiling
previously forked functions using the learned model. The warm-up
time of forking highly depends on how many forks need to be
created for each function in a program and can vary a lot [33]. For
generating data it is also not necessary to compile all functions
with forking. This is controlled by the data generation time hyper-
parameter which can be chosen to end the data generation in the

midst of program warm-up and just use the data collected up to that
point. Automatically evaluating the progress of the program warm-
up during forking and setting the data generation time accordingly
is subject to future work. Similar trade-offs can be made to impact
the model training time. Longer training time will fit a model more
towards the recently provided data. This produces better results
for the currently compiled programs at the cost of larger warm-up
due to increased training time.

7.5 End-to-end Approach
Our approach does not require human interaction after deploy-
ment. However, there are some steps necessary prior to deploy-
ment: Compilation forking needs to be implemented for the opti-
mization to be learned. This includes defining the features to be
extracted. Currently, we have various sets of features which can be
re-used if the domain is similar (e.g. loop-related optimizations). Ad-
ditionally, hyper-parameters for the machine learning models and
pre-processing steps have to be defined which are suitable for the
predictive task. The learning framework provides a set of configura-
tion options, which simplifies this setup. However, if the predictive
task is very different from existing tasks, manual additions to the
framework might be necessary. Lastly, the data generation time
has to be set in accordance to the program run time and warm-up
time. As part of future work, we will add an automated inference
of smallest sufficient data generation time, based on an automated
detection of the program’s warm-up state.

7.6 Holistic Approach
Compilation forking can analyze the interplay of optimizations by
employing nested forking which creates versions according to a
grid search over multiple compilation decisions. In our approach,
we only addressed learning single optimization decisions at run
time. An offline approach would only require some data to be pro-
duced per data generation run, as there will be numerous programs
executed which produce much data for creating a model with good
generalization. In our approach, where data from only one pro-
gram run can be used for creating a new model, investigating the
interplay of multiple optimizations (i.e. >3) would be infeasible
due to the limitations of compilation forking when it comes to an
increased state space.

8 CONCLUSION
We have presented machine-learning-based self-optimizing compiler
heuristics: an end-to-end approach to learn compilation decisions
at run time from dynamically extracted performance metrics. It
uses neural networks as knowledge base to update the learned
compilation decisions at run time with new data. We showed in
quantitative experiments that our approach can outperform human-
crafted heuristics, especially for programs towards which these
heuristic were not tuned. This eases deployment of compilers to
new environments without investing additional engineering ef-
fort. Furthermore, our approach can be used to assist compiler
experts when creating or evaluating new heuristics. Future work
will address the discussed limitations and explore concepts such as
"compilation-as-a-service" or "prediction-as-a-service" which are
facilitated by the client-server architecture we proposed.

Machine-Learning-Based Self-Optimizing Compiler Heuristics MPLR ’22, September 14–15, 2022, Brussels, Belgium

REFERENCES
[1] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.

Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. 2004. Find-
ing Effective Compilation Sequences. In Proceedings of the 2004 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (Washington, DC, USA) (LCTES ’04). Association for Computing Machinery,
New York, NY, USA, 231–239. https://doi.org/10.1145/997163.997196

[2] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. 2018. A Survey on Compiler Autotuning Using Machine Learning. ACM
Comput. Surv. 51, 5, Article 96 (Sept. 2018), 42 pages. https://doi.org/10.1145/
3197978

[3] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N.
Bershad. 1996. Fast, Effective Dynamic Compilation. SIGPLAN Not. 31, 5 (may
1996), 149–159. https://doi.org/10.1145/249069.231409

[4] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transfor-
mations for High-Performance Computing. ACM Comput. Surv. 26, 4 (Dec. 1994),
345–420. https://doi.org/10.1145/197405.197406

[5] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLANConference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Ma-
chinery, New York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[6] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike OBoyle, and Erven Rohou.
1998. Iterative compilation in a non-linear optimisation space. Workshop on
Profile and Feedback-Directed Compilation (03 1998). https://hal.inria.fr/inria-
00475919/document

[7] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-Based Graph Representations for Deep Learning Models of Code.
In Proceedings of the 29th International Conference on Compiler Construction (San
Diego, CA, USA) (CC 2020). Association for Computing Machinery, New York,
NY, USA, 201–211. https://doi.org/10.1145/3377555.3377894

[8] John Cavazos and Michael F. P. O’Boyle. 2005. Automatic Tuning of Inlining
Heuristics. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing
(SC ’05). IEEE Computer Society, USA, 14. https://doi.org/10.1109/SC.2005.14

[9] Stefano Cazzulani. 2012. Octane: The JavaScript benchmark suite for the modern
web. https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-
for.html retrieved May 25 2022.

[10] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing
for Reduced Code Space Using Genetic Algorithms. SIGPLAN Not. 34, 7 (May
1999), 1–9. https://doi.org/10.1145/315253.314414

[11] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (sep 1995), 273–297. https://doi.org/10.1023/A:1022627411411

[12] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir
Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and
Hugh Leather. 2022. CompilerGym: Robust, Performant Compiler Optimization
Environments for AI Research. In Proceedings of the 20th IEEE/ACM International
Symposium on Code Generation and Optimization (Virtual Event, Republic of
Korea) (CGO ’22). IEEE Press, 92–105. https://doi.org/10.1109/CGO53902.2022.
9741258

[13] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wim-
mer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative Inter-
mediate Representation. In Proceedings of the Asia-Pacific Programming Languages
and Compilers Workshop. 1–9. https://ssw.jku.at/General/Staff/GD/APPLC-2013-
paper_12.pdf

[14] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Specula-
tion without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler.
In Proceedings of the 2014 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools
(Cracow, Poland) (PPPJ ’14). Association for Computing Machinery, New York,
NY, USA, 187–193. https://doi.org/10.1145/2647508.2647521

[15] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages (Indianapolis, Indiana,
USA) (VMIL ’13). Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/2542142.2542143

[16] Peng fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery, and Wei
chung Hsu. 2007. Dynamic profile driven code version selection. In the 11th
Annual Workshop on the Interaction between Compilers and Computer Architec-
ture. https://www.researchgate.net/publication/228952289_Dynamic_Profile_
Driven_Code_Version_Selection

[17] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. 2005. A Prac-
tical Method for Quickly Evaluating Program Optimizations. In High Performance

Embedded Architectures and Compilers, Nacho Conte, Tomband Navarro, Wen-
mei W. Hwu, Mateo Valero, and Theo Ungerer (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 29–46. https://doi.org/10.1007/11587514_4

[18] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Ayal Zaks,
Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams,
Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and François Bodin.
2008. MILEPOST GCC: machine learning based research compiler. In Proceedings
of the GCC Developers’ Summit 2008. https://hal.inria.fr/inria-00294704

[19] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-End Vectorization with
Deep Reinforcement Learning. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (San Diego, CA, USA) (CGO
2020). Association for Computing Machinery, New York, NY, USA, 242–255.
https://doi.org/10.1145/3368826.3377928

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Map-
pings in Deep Residual Networks. In Computer Vision – ECCV 2016, Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing,
Cham, 630–645. https://doi.org/10.1007/978-3-319-46493-0_38

[21] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation (San Francisco,
California, USA) (PLDI ’92). Association for Computing Machinery, New York,
NY, USA, 32–43. https://doi.org/10.1145/143095.143114

[22] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Re-
inforcement Learning: A Survey. J. Artif. Int. Res. 4, 1 (May 1996), 237–285.
https://doi.org/10.1613/jair.301

[23] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2014).

[24] P.A. Kulkarni, D.B. Whalley, G.S. Tyson, and J.W. Davidson. 2006. Exhaustive
optimization phase order space exploration. In International Symposium on Code
Generation and Optimization (CGO’06). IEEE Computer Society, 13 pp.–318. https:
//doi.org/10.1109/CGO.2006.15

[25] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006. Online
Performance Auditing: Using Hot Optimizations without Getting Burned. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Ottawa, Ontario, Canada) (PLDI ’06). Association for
Computing Machinery, New York, NY, USA, 239–251. https://doi.org/10.1145/
1133981.1134010

[26] Hugh Leather and Chris Cummins. 2020. Machine Learning in Compilers: Past,
Present and Future. In 2020 Forum for Specification and Design Languages (FDL).
IEEE Computer Society, 1–8. https://doi.org/10.1109/FDL50818.2020.9232934

[27] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas
Würthinger, and Hanspeter Mössenböck. 2018. Fast-Path Loop Unrolling of
Non-Counted Loops to Enable Subsequent Compiler Optimizations. In Proceed-
ings of the 15th International Conference on Managed Languages & Runtimes (Linz,
Austria) (ManLang ’18). Association for Computing Machinery, New York, NY,
USA, Article 2, 13 pages. https://doi.org/10.1145/3237009.3237013

[28] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). Association for Computing Machinery, New York, NY, USA,
126–137. https://doi.org/10.1145/3168811

[29] Shun Long and Michael O’Boyle. 2004. Adaptive Java Optimisation Using
Instance-Based Learning. In Proceedings of the 18th Annual International Confer-
ence on Supercomputing (Malo, France) (ICS ’04). Association for Computing Ma-
chinery, New York, NY, USA, 237–246. https://doi.org/10.1145/1006209.1006243

[30] Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel. 2021. Learn-
ing toMake Compiler OptimizationsMore Effective. In Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Programming (Virtual, Canada)
(MAPS 2021). Association for Computing Machinery, New York, NY, USA, 9–20.
https://doi.org/10.1145/3460945.3464952

[31] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation us-
ing Deep Neural Networks. In Proceedings of the 36th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Ka-
malika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4505–4515. http:
//proceedings.mlr.press/v97/mendis19a.html

[32] Raphael Mosaner. 2020. Machine Learning to Ease Understanding of Data Driven
Compiler Optimizations. In Companion Proceedings of the 2020 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Virtual, USA) (SPLASH Companion 2020). Association
for Computing Machinery, New York, NY, USA, 4–6. https://doi.org/10.1145/
3426430.3429451

[33] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and
Hanspeter Mössenböck. 2022. Compilation Forking: A Fast and Flexible Way
of Generating Data for Compiler-Internal Machine Learning Tasks. The Art,
Science, and Engineering of Programming 7 (06 2022). https://doi.org/10.22152/

MPLR ’22, September 14–15, 2022, Brussels, Belgium R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler and H. Mössenböck

programming-journal.org/2023/7/3
[34] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using Graph-Based

Program Characterization for Predictive Modeling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization (San Jose, Cali-
fornia) (CGO ’12). Association for Computing Machinery, New York, NY, USA,
196–206. https://doi.org/10.1145/2259016.2259042

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019), 8026–8037. https:
//dl.acm.org/doi/10.5555/3454287.3455008

[36] Filip Pizlo. 2014. JetStream Benchmark Suite. http://browserbench.org/JetStream/
retrieved May 25 2022.

[37] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius Pirvu,
and Mark Stoodley. 2011. Using Machines to Learn Method-Specific Compilation
Strategies. In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO ’11). IEEE Computer Society, USA,
257–266. https://doi.org/10.1109/CGO.2011.5764693

[38] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da
Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (Portland, Oregon,
USA) (OOPSLA ’11). Association for Computing Machinery, New York, NY, USA,
657–676. https://doi.org/10.1145/2048066.2048118

[39] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll factors using
supervised classification. In International Symposium on Code Generation and
Optimization. IEEE Computer Society, 123–134. https://doi.org/10.1109/CGO.
2005.29

[40] Michele Tartara and Stefano Crespi Reghizzi. 2013. Continuous Learning of
Compiler Heuristics. ACM Trans. Archit. Code Optim. 9, 4, Article 46 (Jan. 2013),
25 pages. https://doi.org/10.1145/2400682.2400705

[41] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski,
and David Li. 2021. MLGO: a Machine Learning Guided Compiler Optimizations
Framework. CoRR abs/2101.04808 (2021). arXiv:2101.04808 https://arxiv.org/abs/
2101.04808

[42] Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins,
Hugh Leather, and Zheng Wang. 2022. Automating Reinforcement Learning

Architecture Design for Code Optimization. In Proceedings of the 31st ACM SIG-
PLAN International Conference on Compiler Construction (Seoul, South Korea)
(CC 2022). Association for Computing Machinery, New York, NY, USA, 129–143.
https://doi.org/10.1145/3497776.3517769

[43] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Op-
timization. Proc. IEEE 106, 11 (Nov 2018), 1879–1901. https://doi.org/10.1109/
JPROC.2018.2817118

[44] Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger.
2017. One Compiler: Deoptimization to Optimized Code. In Proceedings of the
26th International Conference on Compiler Construction (Austin, TX, USA) (CC
2017). Association for Computing Machinery, New York, NY, USA, 55–64. https:
//doi.org/10.1145/3033019.3033025

[45] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (Tucson, Arizona, USA)
(SPLASH ’12). Association for Computing Machinery, New York, NY, USA, 13–14.
https://doi.org/10.1145/2384716.2384723

[46] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer.
2017. Practical Partial Evaluation for High-performance Dynamic Language
Runtimes. In Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). As-
sociation for Computing Machinery, New York, NY, USA, 662–676. https:
//doi.org/10.1145/3062341.3062381

[47] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013.
One VM to Rule Them All. In Proceedings of the 2013 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Indianapolis, Indiana, USA) (Onward! 2013). Association for Computing Machin-
ery, New York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

[48] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014. Space-
Efficient Multi-Versioning for Input-Adaptive Feedback-Driven Program Opti-
mizations. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,
763–776. https://doi.org/10.1145/2660193.2660229

101

Chapter 8

Learned Vector Unrolling

This chapter includes the paper about our case study on learning how to unroll vectorized
loops for obtaining the best performance. It revisits the process of assisting compiler engi-
neers during the heuristic design process, as outlined in the initial paper in Chapter 4.

Paper: Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck.
2022. Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning
Models. In Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages (VMIL 2022). Association for Computing Machinery, New York,
NY, USA, 36–47. https://doi.org/10.1145/3563838.3567679

Improving Vectorization Heuristics in a Dynamic
Compiler with Machine Learning Models

Raphael Mosaner
raphael.mosaner@jku.at

Johannes Kepler University
Linz, Austria

Gergö Barany
gergo.barany@oracle.com

Oracle Labs
Vienna, Austria

David Leopoldseder
david.leopoldseder@oracle.com

Oracle Labs
Vienna, Austria

Hanspeter Mössenböck
hanspeter.moessenboeck@jku.at

Johannes Kepler University
Linz, Austria

Abstract
Optimizing compilers rely on many hand-crafted heuristics
to guide the optimization process. However, the interactions
between different optimizations makes their design a difficult
task. We propose using machine learning models to either
replace such heuristics or to support their development pro-
cess, for example, by identifying important code features.
Especially in static compilation, machine learning has been
shown to outperform hand-crafted heuristics. We applied
our approach in a state-of-the-art dynamic compiler, the
GraalVM compiler. Our models predict an unroll factor for
vectorized loops for which the GraalVM compiler developers
have not been able to design satisfactory heuristics. Thereby,
we identified features to describe vectorized loops and empir-
ically evaluated the impact of different training data, features
or model parameters on the accuracy of the learned mod-
els. When deployed in the GraalVM dynamic compiler, our
models produce significant speedups of 8-11%, on average.
Furthermore, large speedups unveiled a performance bug
in the compiler which was fixed after our report. Our work
shows that machine learning can be used to improve a dy-
namic compiler directly by replacing existing vectorization
heuristics or indirectly by helping compiler developers to
design better hand-crafted heuristics.

CCS Concepts: • General and reference→ Performance; •
Software and its engineering→ Just-in-time compilers;
Dynamic compilers; • Computing methodologies →
Classification and regression trees; Cross-validation.

Keywords: Dynamic Compilation, Optimization, Heuristics,
Loop Vectorization, Unrolling, Performance, Machine Learn-
ing, Random Forests

VMIL ’22, December 05, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL ’22), December 05, 2022, Auck-
land, New Zealand, https://doi.org/10.1145/3563838.3567679.

ACM Reference Format:
Raphael Mosaner, Gergö Barany, David Leopoldseder,
and Hanspeter Mössenböck. 2022. Improving Vectorization
Heuristics in a Dynamic Compiler with Machine Learning Models.
In Proceedings of the 14th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL ’22), December
05, 2022, Auckland, New Zealand. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3563838.3567679

1 Introduction
Dynamic compilation [3] can use more input-specific and
aggressive optimization strategies than static compilation.
This is facilitated by profiling-based speculation [3, 9], where
optimization decisions are based on profiling information
which is gathered prior to compilation. The GraalVM com-
piler [33] uses profile-guided optimization (PGO) extensively
in its more than 100 compiler phases and in countless op-
timizations. However, most of these optimizations impact
each other which often requires trade-offs. Therefore, com-
piler heuristics are employed for finding a compilation setup
which results in the highest peak performance for compiled
functions. Designing theses heuristics is an iterative process,
which often takes years of engineering effort and compiler
expertise. Some compilation parameters are still set stati-
cally, because compiler engineers have not found dynamic
heuristics which yield significant improvements.
One example for such a parameter in the GraalVM com-

piler is the VectorUnroll parameter. After the loop vector-
ization phase, the vectorized loop can be unrolled by using a
custom unroll factor (VectorUnroll). This global compiler
parameter is set to 1 by default, as until now, compiler en-
gineers have not found a satisfying way to set it for each
vectorized loop individually, because interactions between
vectorization and unrolling are hard to formalize and the
resulting code size increase might affect subsequent opti-
mizations in turn. Additionally, heuristics for vectorization
strongly depend on the underlying hardware and need to
be optimized for each system by hand. Figure 1 summa-
rizes the impact of changing the VectorUnroll parameter
(globally) from the default value 1 to 8 for the GraalVM

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

vectorization micro-benchmarks. The histogram groups all
231 benchmarks according to the relative speedup obtained
by using VectorUnroll=8 instead of VectorUnroll=1. The

0.8 1.0 1.2 1.4
Relative Speedup

20

40

60

80

B
en

ch
m

ar
k
s

Figure 1. Relative speedup when using VectorUnroll=8
instead of VectorUnroll=1 for 231 micro-benchmarks.

x-axis depicts the speedup-bins and the y-axis the num-
ber of benchmarks in the respective bin. For example, the
bar between 1.1-1.2 shows that about 10 benchmarks en-
counter speedups of 10-20% when using VectorUnroll=8
instead of VectorUnroll=1. While a large number of bench-
marks (>150) show similar performance for both parameter
values, one in three benchmarks has a significant speedup
or a significant slowdown of more than 3%. Changing the
VectorUnroll parameter globally benefits certain bench-
marks but degrades the performance of other benchmarks in
turn. In addition, running the same experiment on another
hardware or architecture might produce different results.
We propose a purely data-driven approach, where ma-

chine learning is used to model the relationship between
vectorized loops and the optimal VectorUnroll parameter
to use. Such an approach can automatically adapt compiler
heuristics to specific inputs or to specific vectorization hard-
ware. It can also support engineers by providing baselines
to which human-crafted heuristics under development can
be compared to. We evaluated our approach by training and
comparing multiple random forest predictors with different
training data, feature sets and model parameters.
Our predictive models were created in the context of the

GraalVM [33], which is a high-performance, polyglot virtual
machine. Its compiler is one of the most highly-optimizing
dynamic compilers for the Java ecosystem1. The GraalVM
compiler uses a graph-based intermediate representation [8,
10] which is based on a sea of nodes. Nodes in the graph are
connected by edges that model control flow and data flow.
There is a small fixed number of edge types, of which the
most important are Value (data dependency) and Memory
(memory access order dependency). Nodes that represent
computations which produce a value are associated with a
type, e.g., int32 or float64. Nodes can also have associated
metadata. For example, LoopBegin nodes have an estimated
number of loop iterations derived from profiling information.
We tested our machine learning models on the vectoriza-
tion micro-benchmark suite, which is used internally for
optimizing vectorization workloads in the GraalVM. Our
1https://renaissance.dev/

models outperform the static heuristics which are currently
deployed in the GraalVM compiler by 8% - 11% on aver-
age, taking into account all benchmarks where significant
performance differences of more than 3% were measured.
Outliers with speedups of 4–6× were not included in these
averages as they uncovered a performance bug in GraalVM
(see Section 6.1). Our research contributes

• a set of features for describing vectorized loops
• a comprehensive evaluation of differently trained ma-
chine learning models for predicting unroll factors for
vectorized loops

• an integration of trained models in a dynamic com-
piler that is among the most-highly optimizing Java
compilers on the market

• a quantitative experiment which shows that thesemod-
els outperform existing compiler heuristics by 8% - 11%
on average

• a comparison of the deployed models in terms of im-
pacts on compile time and peak performance of exe-
cuted benchmarks

The remainder of this paper is structured as follows. Section 2
starts by describing how we generated data for training our
machine learning models. Section 3 discusses the extracted
program features and Section 4 analyzes the generated data
and presents pre-processing decisions. Section 5 discusses
our model training configurations and compares their im-
pacts on the trained models. Section 6 evaluates the deployed
models in the GraalVM compiler in terms of peak perfor-
mance and compile time.

2 Data Generation
We decided to investigate five values of the VectorUnroll
parameter for each vectorized loop: 1, 2, 4, 8 and 16, where
VectorUnroll=1 is the default setting in the GraalVM com-
piler. When using supervised learning, a machine learning
model is trained with ⟨feature, label⟩ pairs, where features
describe the vectorized loop and labels denote the "correct"
(most performant) VectorUnroll parameter value. In the
following, we describe how the required data is created.

To evaluate which parameter value is most beneficial for
a vectorized loop, multiple versions must be compiled, ex-
ecuted and measured. Typically, other approaches apply a
process called iterative compilation [5]. On a high granularity
level, the same program is be compiled multiple times with
different parameters and the parameter setup which yields
the highest peak performance is remembered for future
compilations of the program. Similarly, functions can be re-
compiled with different parameters and their individual per-
formance can be measured [29]. This allows for fine-grained
program optimizations, where functions can use different op-
timization parameters rather than program-wide and static
flags. In a dynamic compiler, however, re-compiling individ-
ual functions influences other compilations and the program
performance as a whole. Dynamically compiling a program

Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models VMIL ’22, December 05, 2022, Auckland, New Zealand

multiple times often produces different optimization deci-
sions, due to varying profiles, timings and interleavings of
program and compiler threads, which run in parallel. This
aggravates measuring and comparing the impact of different
VectorUnroll parameter values on a single loop. A recently
established technique, called compilation forking [23], ad-
dresses these problems by creating and executing multiple
versions of the same function in a single program execution.
Compilation forking creates these versions based on a com-
mon compilation history and with identical profiles. This
ensures that until creating versions for different VectorUnroll
values, every compilation decision has been made in exactly
the same way. The different versions are then executed al-
ternatingly, to cancel out measurement noise and different
usages of the functions in the long run.

2.1 Compilation Forking
We implemented compilation forking in the GraalVM com-
piler phase which handles loop vectorization. A function
can have multiple vectorized loops L, which, together with
the number of selected versions for the VectorUnroll pa-
rameter (5), would result in 5 |𝐿 | versions, where |𝐿 | is the
number of vectorized loops in the function. However, since
vectorized loops can be considered independent from each
other, the number of versions can be reduced to grow lin-
early with the number of vectorized loops. This is shown in

foo_1
loopA: VU=2
loopB: VU=1

foo_0
loopA: VU=1
loopB: VU=1

foo_2
loopA: VU=4
loopB: VU=1

foo_3
loopA: VU=8
loopB: VU=1

foo_4
loopA: VU=16
loopB: VU=1

foo_5
loopA: VU=1
loopB: VU=2

foo_6
loopA: VU=1
loopB: VU=4

foo_7
loopA: VU=1
loopB: VU=8

foo_8
loopA: VU=1

loopB: VU=16

VU … VectorUnroll
baseline

versions for loop
(after vectorization)

Figure 2. Compilation forking [23] with two loops.

Figure 2 for a function foo with two vectorized loops. Each
function has a baseline version where all vectorized loops
use VectorUnroll=1. Then, for each vectorized loop, four
additional versions are created—one for each VectorUnroll
𝜖 {2, 4, 8, 16}—where all other vectorized loops use the base-
line configuration (VectorUnroll=1). The total number of
versions is 1 + 4 ∗ |𝐿 |. This would result in 9 versions of a
function with two vectorized loops rather than 25. All ver-
sions are compiled independently starting from the common
past after forking. Additionally, each version is instrumented
to measure the number of executions and the total execution
time. After the compilation and instrumentation of all ver-
sions has finished, they are recombined into one function.
This includes an internal dispatch to execute these versions
alternatingly upon invocation, which happens transparently
to the caller. Executing versions alternatingly helps aver-
aging out noisy measurements in the long run. During the

program execution, the performance measurements for each
version are aggregated as shown in Table 1.
Table 1. Extracted performance measurements for each vec-
torized loop (VectorID) in a compiled function (CompID)

CompID VectorID Time1 Invo1 Time2 Invo2 Time4 Invo4 . . .
Comp-1234 Vec-1 882330 336 624341 336 596885 335 . . .
Comp-1234 Vec-2 882330 335 872432 335 885231 335 . . .
Comp-6789 Vec-1 308261 721 71901 721 71821 721 . . .

2.2 Observer Effect
Compilation forking [23] creates comparable performance
measurements for different optimization decisions in a dy-
namic compiler. Nevertheless, an observer effect can still
occur and change how the program as a whole is compiled.
For example, functions take longer to compile when compi-
lation forking is enabled. This can impact the compilation
order and in further consequence profiles or even inlining de-
cisions. The created versions are consistent, as they correctly
reflect the impact of the changed VectorUnroll parameter,
but might not be compiled in the same way as without fork-
ing. The problem may become apparent after deployment
but only if the encountered data is inherently different from
the training data because forking is disabled.
2.3 Feature Extraction
In GraalVM, vectorized loops are processed one after another.
Unrolling a vectorized loop changes "global" features—such
as the number of total nodes in the graph representation
of the function—for subsequent loops. Hence, the order in
which otherwise identical vectorized loops are unrolled could
interfere with the extracted features. Thus, we extract the
features from a snapshot of the compilation before any vec-
torized loop is unrolled. This process is identical during data
generation and when using a deployed model in the compiler.

2.4 Collected Data
We collected feature and performance data from 231 micro-
benchmarks whichwere designed to cover different use cases
of vectorization and therefore provided measurable differ-
ences when changing vectorization parameters. These bench-
marks have been used to design and improve vectorization-
related heuristics in the GraalVM. We collect data from five
executions of each benchmark, to account for differences
due to dynamic compilation and measurement noise. In to-
tal, 142699 data points were collected which corresponds to
142699 vectorized loops. Each data point is described by 190
program features and holds the performance measurements
for all different VectorUnroll values used during compila-
tion. The actual number of data points and features used for
training is discussed in Section 5.

3 Features
In a machine learning context, features describe the envi-
ronment for which a prediction is made. We use several

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

features to describe the state of an intermediate compilation
at the point where a loop is vectorized. As the GraalVM
compiler uses a graph-based intermediate representation
(GraalIR) [8, 10], most features are graph-related. Listing 1
shows a function bar, which maps negative values of an
input array to zero and keeps positive values. The results are
written to an array res, which is returned in the end.
1 double [] bar (double [] s r c , double [] r e s) {
2 for (in t i = 0 ; i < r e s u l t . l e ng t h ; i ++) {
3 r e s [i] = Math . max (s r c [i] , 0D) ;
4 }
5 return r e s u l t ;
6 }

Listing 1. Vector example.
When compiling this code, the opportunity of vectorization
arises, which results in the following features.

3.1 Vector Operation Features
Vectorized loops have a main vector operation kind, which is
a vectorizedwrite in case of Listing 1. Themain kinds aremap
(transform arrays element-by-element), fold (reduce arrays
to a scalar with an arithmetic operation), and write (write a
vector to memory). Thus, the VectorKind feature is a categor-
ical feature with a small number of possible values. Vector
operations also have a data type which includes a bit width.
As the bit width only lies within a small set of values, we com-
bined the type and its bit width by creating a categorical fea-
ture VectorTypewith values {𝑣𝑜𝑖𝑑}∪{𝑓 𝑙𝑜𝑎𝑡, 𝑖𝑛𝑡}𝑥{16, 32, 64}.
The third feature, which is given for any vector operation, is
the average number of loop iterations LoopIterations which
was measured during profiling.

3.2 Vector Component Features
Vector operations in the GraalVM compiler can consist of a
varying number of components. As the majority of machine
learning models takes a fixed number of features as input, we
decided to aggregate information across such components.
As the computation inside the loop may involve arbitrarily
many operations, we use histograms to capture information
about these operations and their dependencies.

VectorInputs. For the vectorInput histogram all occur-
rences of [VectorKind × VectorType] are counted recursively.
In the example loop, the operation which precedes the vector-
ized write is a mapping from src array elements to res array
elements which is represented by a node with VectorKind
VectorMap and VectorType float_64. These features are sim-
ilar to the vector operation counts presented by Stock et al.
[31], but with added type information. As the number of
vector operation kinds is small, adding the type information
does not increase the number of features dramatically.

Vector arithmetic. Arithmetic operations inside the vec-
torized loop are encoded as features by creating aVectorNodes
histogram. The Math.max operation in the example loop is

represented by a Max node. Type information for nodes is
not as important as for vector operations. Therefore, the
number of features is reduced by storing only the node kinds
without type information. Similarly to the node information,
the VectorEdges histogram stores all edge type counts.
VectorGroups. For loops which contain multiple vector-

izable operations that do not depend on each other, the
GraalVM compiler creates a ‘vector group’. Such vector op-
erations inside a group need to be processed together, albeit
being potentially unrelated. We aggregate all grouped vector
operations inside a group in a VectorGroup histogram.

3.3 Feature Summary
Table 2 summarizes all features which were available after
data collection. Column Count contains the number of fea-
tures for histograms. In addition to vector operation and vec-
tor component features, we captured histograms for all node
types (GraphNode histogram) and edge types (GraphEdge
histogram) of the whole graph the vectorized loop is part
of. These features give an estimate of the complexity of the
function as a whole which also correlated with the resulting
code size [24]. Values that are not encountered during data
collection are not added to the histograms. For example, 109

Table 2. Extracted features.
Feature(s) Type Count Example

VectorKind cat 1 "vectorWrite"
VectorType cat 1 "int_32"
LoopIterations float 1 1024.125
VectorInputs hist 25 "MapVectorNode_int16: 2"
VectorNodes hist 36 "MaxNode: 1"
VectorEdges hist 2 "Value: 2"
VectorGroup hist 3 "FoldVectorNode_int64"
GraphNodes hist 109 "AddNode: 7"
GraphEdges hist 7 "Association: 32"
GraphAggregates hist 5 "FixedNodes: 175"

different node types were encountered in all benchmarks,
but within vector arithmetic only 36 node types were found.
While the total number of extracted features is 190, the actual
number of features used in model training might be reduced
as discussed in Section 5.

4 Data Analysis and Pre-processing
Our initial data set consisted of 142699 data points and 190
feature values collected from 231 benchmarks which were
executed 5 times each. We analyzed the generated data and
selected pre-processing steps to improve the data quality.

Labels. In order to train a classification model, the labels
(i.e. "correct" VectorUnroll parameters) for each data point
need to be derived from the performance measurements. The
labels are calculated from the average execution times as

label = argmin
𝑖∈{1,2,4,8,16}

(
totalTimei
invocationsi

)

Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models VMIL ’22, December 05, 2022, Auckland, New Zealand

1 2 4 8 16
Label [VectorUnroll]

0

5000

10000

15000

D
at

ap
oi

nt
s

25.0%

21.9%
20.8%

17.8%

14.4%

(a) Including standard library
functions.

1 2 4 8 16
Label [VectorUnroll]

0

200

400

600

800

1000

D
at

ap
oi

nt
s

14.0%

8.2%

12.1%

31.8%
34.0%

(b) Excluding standard library
functions.

Figure 3. Distribution of the extracted most beneficial
VectorUnroll parameter in the benchmarks.
which calculates the unroll factor yielding the lowest aver-
age execution time. If the difference of average speedups for
different values of VectorUnroll is below the level of mea-
surement noise, data points described by similar features can
have different labels assigned. To reduce this phenomenon,
we excluded measurements where the average execution
time is very small or the number of invocations is below 100.
This reduced the number of data points to 74485, which is
about 52% of the initial data size.

Feature Reduction. We built sparse histograms, meaning
that they only contain features which are encountered in at
least one data point in the generated data. For example, from
about 500 different nodes in the GraalIR only 109 nodes are
found during the vectorization phase in one of our bench-
marks. To reduce the number of features even further, we
removed features which are equal for at least 99% of the
data points. This heuristic reduced the number of histogram
features to 139 (see Table 3) or 142 features in total.

Table 3. Histograms after feature reduction.
Histogram
Features

before
filtering

after
filtering

VectorInputs 25 16
VectorNodes 36 14
VectorEdges 2 2
VectorGroup 3 2
GraphNodes 109 94
GraphEdges 7 7
GraphAggregates 5 4

Data from Standard Libraries. Most programs use stan-
dard library functions, such as java.util.ArrayList.add.
This can lead to similar data points across different bench-
marks. While the profiling information gathered prior to
compilation often causes differences between the same li-
brary functions used in different benchmarks, we analyzed
the impact of removing standard library functions from the
data. Figure 3 shows the distribution of labels for all data
(Figure 3a) and for the data with standard library functions
removed (Figure 3b). In both cases, the previously men-
tioned filtering has already been applied to the data. As

expected, there are significant differences in the distribu-
tions. When taking a look at Figure 3a, which summarizes
all data including standard library functions, a tilt towards
lower VectorUnroll values can be seen but the distribution
as a whole is fairly balanced. When removing the data points
stemming from library functions, the distribution becomes
highly imbalanced in favor of large values for VectorUnroll.
This imbalance can be explained by the nature of the micro-
benchmarks which are designed with long-running loops
to be optimized with vectorization. We decided to analyze
both configurations. In one configuration, we trained and
deployed our models to work with all data. In the other
configuration, we trained our models without the standard
library data and used the models only when compiling non-
standard library data.

5 Model Training
After initial experiments we decided against using deep-
learning algorithms due to the small data set and its expected
low versatility. Instead, we employed random forests [15],
which build multiple decision trees and combine their local
outputs to derive its global decision. In case of a classification
problem, this global decision is a majority vote over all deci-
sion trees which outputs the most frequently predicted class.
Decision trees have also been used by Kulkarni et al. [16] as
their human-readable format allows to derive information
about important features and also Papadimitriou et al. [26]
recently chose a tree-based learning algorithm in their work.

5.1 Training Setup
We conducted a cross-validation to distinct training data
and test data on benchmark level. For the training setup
we randomly split the set of benchmarks 𝐵 into 𝑛 groups
𝐵0, 𝐵1, ..., 𝐵𝑛 of 10 to 11 benchmarks. Each of these groups
is used as test data for one sub-model 𝑀0, 𝑀1, ..., 𝑀𝑛 . Sub-
model 𝑀𝑖 is trained with the data from benchmarks 𝐵\𝐵𝑖
and tested on the data of 𝐵𝑖 . This way, there is no overlap
of training and test data on the level of benchmarks. On the
level of functions, there can still be overlaps for standard
library methods, if they are compiled in a similar way.
5.2 Training Configurations
We evaluated the impact of three disjoint configuration pa-
rameters each addressing one dimension in the training.

Data: Standard Library Functions. Figure 3 shows that
the label distribution differs between the whole data and
benchmark-specific data without standard library functions.
We therefore compare models which were trained and tested
on data which either includes or excludes the library data.
Due to our cross-validation setup, the number of data points
which were used for training and testing differ for each sub-
model. Including the library data yields 71245 data points
for training and 3237 data points for testing, on average.
Excluding the library data reduces the number of data points
for training to 2798 and for testing to 163, on average.

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

477 131 104 100 57

199 279 104 69 102

253 102 248 79 86

153 70 103 165 59

111 61 98 66 182

(a) lib | graph | ¬pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

569 98 87 37 78

247 310 75 32 89

291 97 228 36 116

203 53 83 129 82

115 70 72 12 249

(b) lib | graph | pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

478 67 260 34 30

391 138 132 44 48

302 73 321 31 41

281 25 168 50 26

223 46 157 20 72

(c) lib | ¬graph | ¬pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

499 50 219 18 83

391 160 94 24 84

284 68 289 27 100

284 24 133 57 52

212 45 109 13 139

(d) lib | ¬graph | pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

9 2 0 1 6

3 5 1 7 3

2 1 2 17 3

1 0 1 32 6

2 0 5 35 48

(e) ¬lib | graph | ¬pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

10 2 0 0 6

9 5 2 0 3

9 1 3 3 9

8 0 0 17 15

5 0 0 11 74

(f) ¬lib | graph | pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

8 3 2 4 1

3 2 0 9 5

2 6 3 13 1

1 11 2 17 9

1 8 4 31 46

(g) ¬lib | ¬graph | ¬pruned.

1 2 4 8 16
Predicted label

1

2

4

8

16

T
ru

e
la

b
el

8 4 0 3 3

3 7 0 7 2

2 13 0 2 8

1 11 0 9 19

1 8 0 25 56

(h) ¬lib | ¬graph | pruned.
Figure 4. Confusion matrices for one sub-model for each configuration.
lib ... includes standard library data | graph ... includes graph features | pruned ... random forest pruned to depth 10

Features: Graph Features. After feature reduction, 37
features describe the vectorized loop, and 105 features de-
scribe the compilation graph as a whole. To evaluate the
impact of these graph features, we used configurations with
all (142) features and ones without the graph features.

Model: Tree Pruning. Overfitting and generalization are
crucial aspects during model training. Overfitting is a phe-
nomenon where the training data with all its peculiarities
(and noise) is perfectly captured by the model. This gives
good prediction accuracy on the training data but at the cost
of bad performance on the test data. Due to overfitting, the
generalization to new data can degrade. The default setting
when training random forests allows decision trees of ar-
bitrary depth, which can cause overfitting. Therefore, we
added a configuration setup where we pruned the decision
trees to a maximum depth of 10. This leads to omitting data
splits in the deeper levels of the tree which are more likely
to be based on training data peculiarities.

5.3 Training Results
The above configuration parameters lead to 8 (= 2 x 2 x 2)
configurations in total. For each configuration a set of ran-
dom forests—each with 100 trees—was trained, according to
our cross-validation setup (see Section 5.1). The sub-models
were then tested with the data from the benchmarks which
were excluded from the training. Figure 4 shows the con-
fusion matrices for the first sub-model from each configu-
ration. The x-axis shows the predicted value whereas the
y-axis the actual label. The main diagonal holds the correct

predictions. Sub-models (a) and (b) show especially good
accuracy over all classes, however, with a stronger tendency
to predict VectorUnroll=1 than in the distribution of the
training data (Figure 3a). When removing the graph features
for the training, a further shift towards smaller values for
VectorUnroll can be seen for (c) and (d). This is an indica-
tor that the size or complexity of the graph influences the
prediction and pushes it towards larger unroll factors. For
sub-models (e)-(h) which were trained and tested without
the data from standard library functions, VectorUnroll=8
and VectorUnroll=16 are predicted most of the time. Many
predictions are correct, or just off-by-one, which correlates
with being the second best label.

Table 4 summarizes the trained models for each config-
uration, where all values correspond to geometric means
across all sub-models. Pred 1 to Pred 16 summarize how often
the particular class was predicted for the test data. The best
performance when using the model on the training data is
achieved when using the graph features and without prun-
ing the trees. Without the library functions, the model can
be overfitted to the training data with an accuracy of over
90%. When the library functions are included, the overfitted
model has below 60% accuracy. This can be explained by con-
tradicting data, where similar or even identical data points
are labeled differently. Such data is especially found in the
standard library data, where different VectorUnroll values
often produce similar performance. For all configurations,
the accuracy on the test data can be improved by pruning
the trees. This is expected, as pruning counters overfitting.

Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models VMIL ’22, December 05, 2022, Auckland, New Zealand

Table 4. Summary of trained models. Pred 1 to Pred 16 summarize the distribution of predicted classes for the test data. All
values are geometric means across all sub-models trained for cross-validation.

Model Config Features Data
train

Data
test

ACC
train

ACC
test

Pred 1
test

Pred 2
test

Pred 4
test

Pred 8
test

Pred16
test

with
library
data

graph
features

large RF 142 71245 3237 59.2% 39.7% 35.2% 17.9% 19.3% 12.8% 14.8%
pruned 142 71245 3237 43.9% 42.7% 40.6% 17.4% 16.0% 7.6% 18.4%

no graph
features

large RF 37 71245 3237 41.5% 31.0% 49.0% 9.8% 29.0% 6.0% 6.0%
pruned 37 71245 3237 34.2% 33.1% 48.1% 12.4% 24.2% 4.4% 10.6%

without
library
data

graph
features

large RF 142 2798 163 90.5% 50.1% 14.9% 1.7% 7.5% 32.9% 33.5%
pruned 142 2798 163 73.5% 53.6% 14.9% 1.3% 2.2% 27.2% 43.7%

no graph
features

large RF 37 2798 163 82.4% 46.7% 11.0% 3.9% 4.5% 33.5% 27.9%
pruned 37 2798 163 66.0% 50.5% 8.2% 0.1% 0.3% 26.9% 49.1%

Using the graph features improves the accuracy on the train-
ing data significantly. As the accuracy for the test data is
improved as well, it is indicated that the graph features do
not solely contribute to overfitting.

The distributions of the predictions for the test data show
a tendency of amplifying the underlying training data dis-
tribution the more measures against overfitting are in place.
Forests which use the graph features and are not pruned
predict similarly to the label distribution in the training data,
shown in Figure 3. This lets us assume that even after split-
ting the data correctly into training and test data, many data
points may be similar across these splits: We can reason that
the benchmarks are written in similar ways. When graph fea-
tures are omitted and trees are pruned, more frequent classes
in the training data are predicted with even higher frequency.
This can especially be seen for the models which are not us-
ing the library data. There, more than 75% of the test data
either produces VectorUnroll=8 or VectorUnroll=16 as
output. The underlying distribution in the training data (Fig-
ure 3b) has only 66% in those two classes.
For both data sets, the best models in terms of test data

accuracy are obtained when using the graph features and
pruning the trees. However, the accuracy of the models does
not reflect the performance of the model when deployed. The
training data labels are based on measurements. Therefore,
the label for vectorized loops where unrolling does not have
any impact are determined only by the measurement noise.
Thus, the underlying model cannot learn a correct way to
predict these data points and has likely a low accuracy. How-
ever, "wrong" predictions for such data have no impact when
deploying the model in the compiler.

5.4 Learning from Models
An additional application of machine learning in compilers
is to support compiler engineers when designing heuristics.
When using decision trees or random forests, the data is
classified in a human-readable way. In their work on pre-
dicting inlining decisions, Kulkarni et al. [16] transformed
their neural network to a decision tree to infer knowledge
about the model’s decision making. Figure 5 shows a snippet
from a single decision tree taken from one of our random

forest classifiers. The first node contains all data points and
class = 16

impurity = 0.743 | dist = [411, 208, 339, 903, 910]
CompVectorNode-int32 < 1

class = 1
impurity = 0.743 | dist = [16, 7, 8, 3, 4]

iterations > 130

class = 1
impurity = 0.0

dist = [42, 0, 0, 0, 0]

class = 4
impurity = 0.765

dist = [3, 7, 8, 3, 4]

class = 1
impurity = 0.0

dist = [13, 0, 0, 0, 0]

true false

falsetrue

…

Figure 5. Decision tree snippet.

if not further subdivided would predict VectorUnroll=16
for every input, because this is the most frequent class in the
node’s distribution. A lower impurity means that more data
points share the same class. The most information can be
inferred from nodes with an impurity of 0 at shallow levels
of the tree. For example, from the first split we can infer
that the presence of CompareVectorNodes indicates that un-
rolling is not beneficial. Similarly, in a deeper nesting level,
vectorized loops with less than 130 iterations should best
use VectorUnroll=1. Across all random forests, the loop it-
eration feature has the highest importance. While the actual
cut-off values may be of less relevance, important features
and their rough value ranges can be used when designing
heuristics, especially when aggregated across all decision
trees of a random forest.

6 Evaluation
We have shown the performance of the trained models in
terms of prediction accuracy on the test data. However, the
initial hypothesis, that predicting the VectorUnroll param-
eter can improve the current static heuristics in the GraalVM,
needs to be tested by deploying our models in the compiler.

Experimental Setup. We used the OnnxRuntime [21] for
Java to load the previously trained models into the GraalVM
compiler. Furthermore, we configured our benchmark har-
ness to use sub-model 𝑀𝑖 which was trained with bench-
marks 𝐵\𝐵𝑖 when executing benchmarks 𝐵𝑖 , according to

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(a) lib | graph | ¬pruned.
Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(b) lib | graph | pruned.

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(c) lib | ¬graph | ¬pruned.
Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(d) lib | ¬graph | pruned.

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(e) ¬lib | graph | ¬pruned.
Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(f) ¬lib | graph | pruned.

Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(g) ¬lib | ¬graph | ¬pruned.
Benchmark

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
S

p
ee

d
u

p

(h) ¬lib | ¬graph | pruned.

Figure 6. Relative speedup compared to default GraalVM. Higher is better. Each tick on the x-axis represents one benchmark,
the y-axis the corresponding speedup (>1) or slowdown (<1). Benchmarks with speedups or slowdowns <3% are not shown.

our cross-validation setup. Models which were trained with-
out the standard library data are only used when compiling
non-standard library methods. Each benchmark was exe-
cuted 5 times and the results are summarized as geometric
means. We evaluated our approach in terms of peak perfor-
mance, compile time and disk space requirements. Table 5
summarizes the geometric means for these metrics.

6.1 Peak Performance
In accordance to Figure 1, most benchmarks do not show
measurable differences in terms of peak performance when
changing the VectorUnroll parameter. We decided to re-
move benchmarks where the peak performance impact is

Table 5. Geometric means for speedup (higher is better) and
compile time (lower is better) normalized to default GraalVM.

Model Config Speedup Compile
Time

Size
[MB]

with
library
data

graph
features

large RF 1.081 2.386 118.9
pruned 1.109 1.103 4.2

no graph
features

large RF 1.087 1.726 64.1
pruned 1.117 1.078 3.9

without
library
data

graph
features

large RF 1.106 1.072 9.7
pruned 1.117 1.078 2.6

no graph
features

large RF 1.086 1.062 7.8
pruned 1.099 1.070 1.8

Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models VMIL ’22, December 05, 2022, Auckland, New Zealand

less than 3% from the plots and from the speedup means
in Table 5. Figure 6 summarizes the remaining 40-60 bench-
marks, where significant impacts were encountered, for each
model. The benchmark results for each model are sorted
according to the relative speedup compared to the default
GraalVM compiler. Each tick on the x-axis corresponds to
one benchmark and the y-axis depicts the relative speedup
normalized to the baseline. Higher is better.

All models significantly improve the average peak perfor-
mance compared to the GraalVM compiler without machine
learning. Models (a) and (b) which were trained on all data
and use the graph features show the largest slowdowns on
single benchmarks. Removing the graph features ((c) and (d))
removes large negative outliers. Further pruning the trees
(model (d)) has the best results with 11.7% average speedup
for the plotted benchmarks. For models (e) to (h) which were
trained and executed on non-standard library data, removing
the graph features (models (g) and (h)) has larger negative
outliers and worse results. Table 5 indicates that pruning the
trees produces consistently better results. Using the graph
features produces mixed results, depending on the data set
used for training and testing. In total, all models achieve
similar performance results. As models (e) to (h) are not exe-
cuted for standard library functions, it is evident that most
speedups in the (micro-)benchmarks were from the custom
benchmark functions rather than standard library functions.
This indicates that models (a)–(d), albeit being trained with
data stemming to more than 95% from standard library func-
tions, correctly predict the most important data points which
were seen less frequently during training.

Performance Bug. Our machine learning models found a
performance issue in the GraalVM compiler. Certain vector-
ized loops contained redundant pairs of integer narrow/ex-
tend operations. The compiler only recognized these as re-
dundant when the vectorized loop was unrolled. This caused
an artificial improvement through vector unrolling of about
4–6× on 6 benchmarks. This issue was fixed after our report,
and the compiler no longer generates the redundant oper-
ations. We removed these benchmarks in the plots and the
summary in Table 5 to avoid distorting the evaluation.

6.2 Compile Time and Model Size
Table 5 reports the total compile time impact when using
models during compilation. Without pruning the models,
significant compile time increases by factors of 1.7 to 2.4 are
encountered.We found that the overall compile time increase
strongly correlates with the size of the model. Table 7 shows
a more nuanced analysis of the compile time.
Column Model Loading contains the relative portion of

compile time which is spent for model loading. The model
loading for the largest model consumes 60.8% of the total
compile time, which makes model loading the most expen-
sive sub-task. Models are loaded and stored once for each

compiler thread. Therefore, the impact of model loading is
significant for short running benchmarks. However, mod-
els with smaller size, either because less data was used for
training or because of pruning are loaded significantly faster.

Column Decision contains the relative portion of compile
time which is spent for collecting features and invoking
the model. It can take up to 3.1% of the total compile time.
Column Prediction shows that only up to 0.5% of the total
compile time is spent for invoking the model. The prediction
time makes up at most 21.6% of the decision time (column
Prediction / Decision) which shows that feature extraction is
far more expensive than invoking the model. The last column
shows the decision time (feature extraction + model invoca-
tion) in comparison to the average compile time of executing
benchmarks without any models in place. Except for model
loading, the compile time increases are moderate with 2-3.4%
in comparison to the default GraalVM compiler without our
models. Models which are not executed on standard library
data produce a much smaller overhead.
6.3 DaCapo and Scala-DaCapo
We decided to evaluate our approach on (micro-)benchmarks
specifically designed for benchmarking vectorization. This
way, the impact of changed vectorization heuristic is clearly
measurable and less side effects of dynamic compilation can
interfere with the measurements. However, we also tested
two of our models on very different data from well-known
benchmark suites. Both models are trained including the
standard library data and use pruned trees. One model ex-
cludes the graph features and the other uses them. Table 6
summarizes the speedup and compile time for the DaCapo
and Scala-DaCapo suites. The average speedup is slightly

Table 6. DaCapo and Scala-DaCapo performance.
Suite Graph

Features Speedup Compile
Time

DaCapo yes 0.993 1.184
DaCapo no 0.996 1.219

Scala-DaCapo yes 0.995 1.187
Scala-DaCapo no 0.991 1.210

worse than the default GraalVM configuration. However,
most speedups for single benchmarks are below measure-
ment noise. This is, because only small portions of these
benchmarks contain long running, vectorizable loops which
benefit most from unrolling. For DaCapo, only the luindex
benchmark showed a significant slowdown of 4.5% for the
model including the graph features. For Scala-DaCapo, the
scalatest benchmark exhibits a speedup of 7.8% for both mod-
els. However, for the model without graph features kiama,
scaladoc and scalaxb also exhibit slowdowns of 3.3-4.8%.
Despite being trained only with data from Java micro-

benchmarks, our models perform similarly to the highly
tuned GraalVM compiler on larger benchmarks. We could
also conclude, that our models can not perfectly generalize to
the vastly different data from only little (micro-)benchmark

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

Table 7. Model impact on compile time

Model Config Model
Loading Decision Prediction Prediction /

Decision
Decision /

CompTime (default)

with
library
data

graph
features

large RF 60.8% 1.1% 0.2% 18.0% 2.7%
pruned 5.5% 3.1% 0.5% 16.9% 3.4%

no graph
features

large RF 46.1% 1.2% 0.3% 21.6% 2.0%
pruned 5.5% 2.2% 0.5% 21.5% 2.4%

without
library
data

graph
features

large RF 9.6% 0.4% 0.1% 14.3% 0.4%
pruned 4.1% 0.4% 0.1% 15.6% 0.4%

no graph
features

large RF 8.1% 0.3% 0.1% 18.9% 0.3%
pruned 2.9% 0.3% 0.1% 21.3% 0.3%

data. This is especially expected for the the Scala-DaCapo
suite, as Scala code produces significantly different features
when being compiled in contrast to Java code which is used
in the (micro-)benchmarks.

7 Related Work
Loop vectorization was introduced by Allen and Kennedy [1].
More versatile vectorization strategies such as superword-
level parallelism (SLP) [17] and auto-vectorization [25] could
not replace traditional loop vectorization [7]. This fostered
recent research analyzing the impact of loop unrolling [4] on
vectorization [28] or trying to integrate control-flow-based
(i.e. loop-based) vectorization within SLP vectorization [7].
Rocha et al. [28] present Vectorization-Aware Loop Unrolling
where loop unrolling is performed in such a way that it ben-
efits vectorization, which is traditionally performed later
during compilation. This is done by examining the vectoriza-
tion potential at the time of unrolling and selecting the unroll
factor accordingly. Furthermore, they forward hints to the
vectorizer which override the default behavior and unveil
more vectorization opportunities. Our approach addresses
the interplay between unrolling and vectorization in reverse
order. Based on how a loop has been vectorized, a suitable
unroll factor is chosen.
There is extensive research in the domain of machine

learning for compilers [2, 32]. A number of works also ad-
dresses using machine learning for either vectorization [14,
20, 31] or unrolling [22, 30]. For example, Haj-Ali et al. [14]
recently presented NeuroVectorizer, which is an end-to-end
tool for LLVM. It is able to learn the number of loop iterations
which need to be packed into vector operations, i.e. the vec-
torization factor (VF). NeuroVectorizer automatically extracts
loop features from source code, selects a VF and compiles
the functions using clang. The speedup compared to the last
measured configuration is used as a reward for training a
model with deep reinforcement learning. They are able to
achieve speedups between factors of 1.29 and 4.73 and get
close to the performance of a brute force search over all pa-
rameter combinations. This is interesting, as their approach
(and the baseline in LLVM) lacks profiling information of
how often loops are assumed to be iterated. In contrast to

their work for a static compiler, our approach targets dy-
namic compilation where data generation and performance
measurements are more noisy and less reproducible, which
requires an adaptive approach.
Papadimitriou et al. [26] used machine learning in a con-

current execution environment based on the GraalVM to pre-
dict where certain tasks should be executed, i.e. CPU, GPU
or IGPU. They use a combination of static features and pro-
filing information to train a tree-based model, which, when
deployed, yields performance results close to the optimum,
which is obtained by exhaustive state space exploration.

During data generation, we employed compilation fork-
ing [23] (see Section 2.1, which is related to iterative com-
pilation [5, 12, 13, 19] and multi-versioning [11, 18, 34], but
takes the previous compilation history into account. Itera-
tive compilation and multi-versioning typically aim to create
globally optimal compilations while we create versions to
derive knowledge about local optimization decisions.

While we used traditional histogram-based features as our
models, graph-based feature representations have also been
used in related work [6, 27]. However, Brauckmann et al. [6]
concluded that no single best feature representation exists.

8 Conclusion
We have presented an approach to determine a vectorization
parameter in a dynamic compiler with machine learning
models. These models were able to produce speedups of
8-11% on a benchmark suite made for evaluating the vec-
torization in the GraalVM compiler. Significant speedups of
factors between 4 and 6 unveiled a compiler performance
bug which our approach helped to fix. Building on that, we
want to further analyze the generated decision trees to infer
improvements for existing heuristics. In addition, in future
work we want to analyze how well our models generalize on
vastly different data and whether algorithms such as Extra-
Trees, as used in [26], affect overfitting. Furthermore, as our
approach is applicable to other vectorization related opti-
mizations, we plan to predict other parameter, such as vector
size or AVX versions dynamically for vectorized loops.

Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models VMIL ’22, December 05, 2022, Auckland, New Zealand

References
[1] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FOR-

TRAN Programs to Vector Form. ACM Trans. Program. Lang. Syst. 9, 4
(oct 1987), 491–542. https://doi.org/10.1145/29873.29875

[2] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo,
and Cristina Silvano. 2018. A Survey on Compiler Autotuning Using
Machine Learning. ACM Comput. Surv. 51, 5, Article 96 (Sept. 2018),
42 pages. https://doi.org/10.1145/3197978

[3] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,
and Brian N. Bershad. 1996. Fast, Effective Dynamic Compilation.
SIGPLAN Not. 31, 5 (may 1996), 149–159. https://doi.org/10.1145/
249069.231409

[4] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler
Transformations for High-Performance Computing. ACM Comput.
Surv. 26, 4 (Dec. 1994), 345–420. https://doi.org/10.1145/197405.197406

[5] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike OBoyle, and
Erven Rohou. 1998. Iterative compilation in a non-linear optimisation
space. Workshop on Profile and Feedback-Directed Compilation (03
1998). https://hal.inria.fr/inria-00475919/document

[6] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo
Castrillon. 2020. Compiler-Based Graph Representations for Deep
Learning Models of Code. In Proceedings of the 29th International Con-
ference on Compiler Construction (San Diego, CA, USA) (CC 2020).
Association for Computing Machinery, New York, NY, USA, 201–211.
https://doi.org/10.1145/3377555.3377894

[7] Yishen Chen, Charith Mendis, and Saman Amarasinghe. 2022. All You
Need is Superword-Level Parallelism: Systematic Control-Flow Vector-
ization with SLP. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San
Diego, CA, USA) (PLDI 2022). Association for Computing Machinery,
New York, NY, USA, 301–315. https://doi.org/10.1145/3519939.3523701

[8] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation. In Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop. 1–9.
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf

[9] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck.
2014. Speculation without Regret: Reducing Deoptimization Meta-
Data in the Graal Compiler. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (Cracow, Poland)
(PPPJ ’14). Association for Computing Machinery, New York, NY, USA,
187–193. https://doi.org/10.1145/2647508.2647521

[10] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Com-
piler. In Proceedings of the 7th ACM Workshop on Virtual Machines
and Intermediate Languages (Indianapolis, Indiana, USA) (VMIL ’13).
Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2542142.2542143

[11] Peng fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery,
and Wei chung Hsu. 2007. Dynamic profile driven code version selec-
tion. In the 11th Annual Workshop on the Interaction between Compilers
and Computer Architecture. https://www.researchgate.net/publication/
228952289_Dynamic_Profile_Driven_Code_Version_Selection

[12] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam.
2005. A Practical Method for Quickly Evaluating Program Optimiza-
tions. In High Performance Embedded Architectures and Compilers, Na-
cho Conte, Tomband Navarro, Wen-mei W. Hwu, Mateo Valero, and
Theo Ungerer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
29–46. https://doi.org/10.1007/11587514_4

[13] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru,
Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh
Leather, Chris Williams, Michael O’Boyle, Phil Barnard, Elton Ashton,
Eric Courtois, and François Bodin. 2008. MILEPOST GCC: machine
learning based research compiler. In Proceedings of the GCC Developers’
Summit 2008. https://hal.inria.fr/inria-00294704

[14] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao,
Krste Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-
End Vectorization with Deep Reinforcement Learning. In Proceed-
ings of the 18th ACM/IEEE International Symposium on Code Gen-
eration and Optimization (San Diego, CA, USA) (CGO 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, 242–255.
https://doi.org/10.1145/3368826.3377928

[15] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd
international conference on document analysis and recognition, Vol. 1.
IEEE, 278–282.

[16] Sameer Kulkarni, John Cavazos, Christian Wimmer, and Douglas Si-
mon. 2013. Automatic Construction of Inlining Heuristics Using Ma-
chine Learning. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’13). IEEE
Computer Society, Washington, DC, USA, 1–12. https://doi.org/10.
1109/CGO.2013.6495004

[17] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword
Level Parallelism with Multimedia Instruction Sets. SIGPLAN Not. 35,
5 (may 2000), 145–156. https://doi.org/10.1145/358438.349320

[18] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006.
Online Performance Auditing: Using Hot Optimizations without Get-
ting Burned. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Ottawa, Ontario,
Canada) (PLDI ’06). Association for Computing Machinery, New York,
NY, USA, 239–251. https://doi.org/10.1145/1133981.1134010

[19] Hugh Leather and Chris Cummins. 2020. Machine Learning in
Compilers: Past, Present and Future. In 2020 Forum for Specification
and Design Languages (FDL). IEEE Computer Society, 1–8. https:
//doi.org/10.1109/FDL50818.2020.9232934

[20] Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe,
and Michael Carbin. 2019. Compiler Auto-Vectorization with Imitation
Learning. Curran Associates Inc., Red Hook, NY, USA.

[21] Microsoft. 2022. ONNX Runtime. https://www.onnxruntime.ai re-
trieved September 1, 2022.

[22] Antoine Monsifrot, François Bodin, and Rene Quiniou. 2002. A Ma-
chine Learning Approach to Automatic Production of Compiler Heuris-
tics. In Proceedings of the 10th International Conference on Artificial Intel-
ligence: Methodology, Systems, and Applications (AIMSA ’02). Springer-
Verlag, London, UK, UK, 41–50. http://dl.acm.org/citation.cfm?id=
646053.677574

[23] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas
Stadler, and Hanspeter Mössenböck. 2022. Compilation Forking: A Fast
and Flexible Way of Generating Data for Compiler-Internal Machine
Learning Tasks. The Art, Science, and Engineering of Programming 7
(06 2022). https://doi.org/10.22152/programming-journal.org/2023/7/3

[24] Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter
Mössenböck. 2021. Using Machine Learning to Predict the Code Size
Impact of DuplicationHeuristics in a Dynamic Compiler. In Proceedings
of the 18th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (MPLR ’21). Association for Com-
puting Machinery, 127–135. https://doi.org/10.1145/3475738.3480943

[25] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-Vectorization of
Interleaved Data for SIMD. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Ot-
tawa, Ontario, Canada) (PLDI ’06). Association for Computing Machin-
ery, New York, NY, USA, 132–143. https://doi.org/10.1145/1133981.
1133997

VMIL ’22, December 05, 2022, Auckland, New Zealand Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck

[26] Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios
Stratikopoulos, Florin Blanaru, and Christos Kotselidis. 2021. Multiple-
Tasks on Multiple-Devices (MTMD): Exploiting Concurrency in Het-
erogeneous Managed Runtimes. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Virtual, USA) (VEE 2021). Association for Computing Machin-
ery, New York, NY, USA, 125–138. https://doi.org/10.1145/3453933.
3454019

[27] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using
Graph-Based Program Characterization for Predictive Modeling. In
Proceedings of the Tenth International Symposium on Code Generation
and Optimization (San Jose, California) (CGO ’12). Association for
Computing Machinery, New York, NY, USA, 196–206. https://doi.org/
10.1145/2259016.2259042

[28] Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís
F. W. Góes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.
Vectorization-Aware Loop Unrolling with Seed Forwarding. In Proceed-
ings of the 29th International Conference on Compiler Construction (San
Diego, CA, USA) (CC 2020). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3377555.3377890

[29] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius
Pirvu, and Mark Stoodley. 2011. Using Machines to Learn Method-
Specific Compilation Strategies. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO ’11). IEEE Computer Society, USA, 257–266. https:
//doi.org/10.1109/CGO.2011.5764693

[30] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll
factors using supervised classification. In International Symposium on
Code Generation and Optimization. IEEE Computer Society, 123–134.
https://doi.org/10.1109/CGO.2005.29

[31] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using
Machine Learning to Improve Automatic Vectorization. ACM Trans.
Archit. Code Optim. 8, 4, Article 50 (jan 2012), 23 pages. https://doi.
org/10.1145/2086696.2086729

[32] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in
Compiler Optimization. Proc. IEEE 106, 11 (Nov 2018), 1879–1901.
https://doi.org/10.1109/JPROC.2018.2817118

[33] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Indianapolis, Indiana, USA)
(Onward! 2013). Association for Computing Machinery, New York, NY,
USA, 187–204. https://doi.org/10.1145/2509578.2509581

[34] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014.
Space-Efficient Multi-Versioning for Input-Adaptive Feedback-Driven
Program Optimizations. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications (Portland, Oregon, USA) (OOPSLA ’14). Association
for Computing Machinery, New York, NY, USA, 763–776. https:
//doi.org/10.1145/2660193.2660229

Part III

Related Work and Conclusions

117

Chapter 9

Related Work

The use of machine learning in compilers is a well-researched concept; first approaches [22]
date back to the end of the last millennium. Wang and O’Boyle [157], Ashouri et al. [10]
and Leather and Cummins [96] provide extensive surveys of the developments in the
field over the last 20 years. The research mostly focused on static compilers whereas the
interplay of machine learning and dynamic compilers is often neglected. We identified four
major dimensions to differentiate research in this broad field and highlight (in bold-face)
how our work is positioned along these axes:

• System: static or dynamic compilation

• Granularity: global compiler flag, method compilation strategy or method-local
optimization decision

• Kind of optimization: flag tuning, phase ordering, phase selection, inlining, loop
unrolling, loop peeling, vectorization, . . .

• Technique: genetic algorithms, decision trees, support vector machines, deep learn-
ing, reinforcement learning, . . .

In this chapter, we compare our work to influential work from the past and the present,
and identify similarities and differences along these dimensions. We also discuss concepts
such as iterative compilation or multi-versioning, which are inextricably linked to the use
of machine learning in compilers.

118 Related Work

9.1 Previous PhD Theses

Over the past decades, the research on machine learning for compilers has culminated in
several PhD theses.

Thesis Year Major Topics

Fursin [50] 2004
Iterative compilation and search space reduction

Performance prediction

Cavazos [23] 2005
Optimization and algorithm selection

Supervised learning of heuristics in the JikesRVM

Dubach [44] 2009 Architecture-specific compilation strategies

Leather [95] 2010
Feature engineering

Iterative compilation

Kulkarni [90] 2014
Phase ordering and optimization selection

Inlining heuristics

Mendis [106] 2020
Auto-vectorization

Throughput prediction

Cummins [33] 2020
Data generation

Learning on raw code

Table 9.1: Overview of related PhD theses

The research described in all the above theses inspired our own work, and we will discuss
corresponding publications in the sections below. We want to especially highlight the
theses of Cavazos [23] and Kulkarni [90], in which they also deal with dynamic compilers,
but in contrast to our work, do not address their peculiarities regarding compilation noise
and consistency nor make use of concepts such as deoptimization.

9.2 Iterative Compilation and Multi-versioning

Iterative compilation [17; 51; 80] is a fundamental concept for finding compilation pa-
rameters, which optimize the program to be compiled. In its simplest form, this is done
by exhaustively enumerating the state space of all compiler parameter configurations,

Related Work 119

compiling the target program with each configuration, and selecting the best-performing
version for further use. In combination with search techniques or genetic algorithms [4; 10],
iterative compilation is also the core of autotuning frameworks, such as OpenTuner [8]
and SRTuner [125], which are discussed in Section 9.3. With the rise of using machine
learning in compilers, iterative compilation has been used to create labels for enabling
supervised learning [96].

Compilation forking has similarities to iterative compilation. However, traditional ap-
proaches use iterative compilation to optimize a method as a whole. We optimize different
decisions within a method separately but with an identical compilation history, which
is paramount in dynamic compilers. In addition, we deploy and execute the different
versions alternatingly in single program runs. This positions our approach more closely
to multi-versioning [49; 93; 94; 172]. Multi-versioning compiles and deploys multiple
versions of a program region—for example, methods or loops—and selects, at run time,
what version to use. Its accustomed goal is to have optimized code versions executed for
a particular input category [49; 172]. For example, Lau et al. [93] create multiple versions
of a method in the V9 JVM [57] and modify the method dispatch to execute the versions
alternatingly. After enough measurements have been collected, they install the fastest
version and discard the others.

Fursin et al. [51] proposed the use multi-versioning to speed up iterative compilation in the
static EKOPath compiler. Instead of evaluating one compiler parameter configuration per
program execution, they identified the most important functions of a program, compiled
them with different configurations, and measured all versions in a single execution. Com-
pilation forking adopts this idea but leverages it into dynamic compilation by ensuring an
identical compilation history. In addition, its versions do not stem from changing global
flags prior to compilation as in [51], but from method-local changes to single optimization
decisions. This makes our approach more fine-grained.

9.3 Autotuning

Autotuning is the process of automatically optimizing a program by exploring different
compilation scenarios [10]. Typically, autotuning denotes a holistic optimization process,
where the optimization space is too large to be fully explored by exhaustive iterative
compilation. Frameworks, such as OpenTuner [8] and SRTuner [125], find (near-)optimal

120 Related Work

compiler flag configurations for single programs but not necessarily implement means for
generalizing the configurations to new data.

OpenTuner OpenTuner [8] takes a definition of the optimization space (parameters and
value ranges) and a success function for evaluating an optimized program. Then it selects
promising optimization parameter configurations, evaluates their quality via iterative
compilation and uses the results to guide the search for (near-)optimal configurations.
OpenTuner uses multiple search algorithms at the same time which share their results
with each other. These algorithms include evolutionary mutation, hill climbing, pattern
search or random search. Trimming down large search spaces efficiently is an important
task. In our work, we addressed only single optimization heuristics per model, keeping
the search space small and, thus, not requiring complex autotuning techniques to acquire
the training labels.

SRTuner SRTuner [125] is another purely search-based autotuning framework, which
also considers inter-optimization relationships. It identifies more impactful optimizations
and tunes their parameters first. To not get stuck in local optima, they trade-off exploration
and exploitation with a custom algorithm, which uses feedback from previous trials. It
either evaluates flag combinations in close proximity to the past (exploitation) or, if
rewards have become smaller, it falls back to exploring other regions of the search space.

Interactive Applications Mpeis et al. [119] devised an interesting approach for replay-
based offline optimization of Android programs. At run time, they capture hot regions,
inputs and memory snapshots when entering the regions as well as the architectural state
of the processor. When the phone is idle, they perform iterative compilation with genetic
algorithms to replay the hot code with different optimization configurations, i.e., LLVM
passes. Upon the next start of the Android application, the best optimization settings for
each region are selected. While the costly optimization process is performed "offline", i.e.,
when the user is not running the application, they have to exclude code with I/O or other
side-effecting behavior, which cannot be captured and replayed.

ML for Autotuning Park et al. [125] acknowledge that autotuning is expensive and see a
development towards generalization techniques (i.e., machine learning) and the ability of
autotuners to provide them with training data. COBAYN [11] follows such an approach by

Related Work 121

applying iterative compilation excessively offline to obtain the best compiler flag settings
for a program and derive a Bayesian network, which stores the obtained knowledge.
After deployment, this network can be used to create one or multiple flag configurations.
This approach converges faster towards a good compilation of the program than with
iterative compilation. Park et al. [124] used support vector machines and linear regression
models in a similar way to guide iterative compilation towards few promising sets of
optimizations to enable. They compared three types of predictors: predicting optimization
sequences to apply, predicting the speedup of a particular configuration compared to the
baseline, and predicting whether one configuration works better on a specific program
than another configuration. In our work, as we addressed single optimizations, only the
speedup compared to the baseline was a suitable metric for model training.

Granularity Autotuning frameworks generally operate on (global) flags for static com-
pilers, e.g. GCC flags [11; 89; 125]; tuning optimizations for performing method-local
decisions differently is generally not supported. We proposed compilation forking to sup-
port this important use case, especially during dynamic compilation. If a method contains
multiple optimization targets (e.g. loops), each of them is analyzed independently by
creating a new fork. In that case, no holistically optimized version of a method is created,
which is a fundamental and conceptional difference to autotuning.

9.4 Machine Learning in Static Compilers

This thesis contributes to facilitating the use of machine learning particularly in dynamic
compilers. However, the majority of research on data-driven compiler optimizations
addresses static compilers, often for LLVM. Despite being different systems, we want to
highlight related work in static compilers, as there are still concepts which carry over to
our work.

MilepostGCC The Milepost project [52; 53] was one of first larger projects for applying
machine learning in a compiler, and we consider it among the most influential work in
the field. The MilepostGCC framework builds on top of GCC and provides means for
interacting with GCC’s optimization phases and parameters. Fursin et al. [53] used this
framework to create training data by investigating the impact of 500 different compiler
flag combinations for each benchmark program. They created a probabilistic model which

122 Related Work

maps the program features of the training data to the distribution of good solutions, which
are all optimization sequences that achieve at least 98% of the optimal performance. For
selecting an optimization sequence for a new feature set, they used 1-nearest neighbor to
fetch the distribution for the most similar feature vector in the training data. Milepost-
GCC [53] was able to outperform the default GCC by around 11% on the MiBench [62]
benchmark suite. Fursin et al. [53] presented the first holistic framework for support-
ing data generation, model training and model deployment. It had a great impact on
subsequent research as well as on this thesis, although MilepostGCC focuses on static
compilation and compiler flag optimization.

DeepTune Cummins et al. [34] presented DeepTune, which is a machine learning pipeline
capable of creating models based on source code without the need for manually defining
features. They map source code to tokens and use embeddings to create more dense
representations of the code, which is then collapsed into one discriminating "feature"
vector obtained via an LSTM [69] network. A dense neural network is then responsible
for learning the relationship between their created feature vectors and the heuristic value.
They evaluated DeepTune on two OpenCL-related classification problems: finding the
optimal device (CPU or GPU) on which to execute a kernel and finding an optimal thread-
coarsening factor ∈ 1, 2, 4, 8, 16, 32. Both case studies outperformed the hand-crafted
heuristics in most cases. In this thesis, we dealt with a dynamic compiler and its internal
IR representation of code, which are two fundamental differences to the work of [34].
Creating feature vectors implicitly is a very interesting approach, although it increases the
black-box character of the whole system.

Vemal Mendis et al. [108; 109] used machine learning for improving Superword-Level
Parallelism (SLP) vectorization and for predicting the execution cycles of basic blocks on
LLVM. Their initial, non-machine-learning-related work, goSLP [107], solved the statement
packing problem and the vector permutation selection problem for SLP auto-vectorization.
In their follow-up work [109], they used gated graph neural networks (GGNN) and
imitation learning to mimic the vectorization decisions of goSLP, which are optimal but
compile-time-intensive. Their learned policy, called Vemal [106; 109], outperformed the
existing LLVM SLP heuristics on most benchmarks, with a geometric mean run-time
speedup of 1.5%. However, goSLP still outperforms the imitating model for six out of
seven benchmarks. Their work shows that it is possible to derive a well-performing
machine learning model from a (near)-optimal but expensive solution.

Related Work 123

Ithemal In order to support performance optimizations without having a well-performing
solution to imitate, Mendis et al. [108] created Ithemal, which predicts the execution cycles
of basic blocks with machine learning. They decomposed assembly instructions into
tokens and hierarchically created an embedding for each instruction based on the token’s
embeddings. To account for the variable length of instructions when creating the embed-
dings and the variable number of instructions when predicting the execution cycle for a
basic blocks, they used recurrent neural networks (RNN) with long short term memory
(LSTM) [69]. They fetched more than four million basic blocks from benchmark and real
world applications and timed each basic block by moving it to a loop for achieving steady
performance. Ithemal outperforms state-of-the-art, hand-written analytical models by
far in terms of prediction accuracy while being executed equally fast. Their work shows
that in an ideal world, where problems are isolated from noise and the environment,
hand-crafted models stand no chance against data-driven approaches.

MLGO Recently, Trofin et al. [154] introduced MLGO, which is a machine learning
framework available in the LLVM repository. For their initial case study, they learned a
model to perform inlining-for-size. Similar to our early work [116], they found working
with code size metrics less prone to measurements noise. Conceptually, their work shows
substantial differences to ours: The immediate effect of inlining a particular callee is
never measured; instead, they measure only the cumulative effect (code size impact) after
LLVM’s inlining phase has processed all callees of a method. This design decision requires
more training data and produces less accurate models [154]. In contrast, compilation
forking enables us to isolate the effect of method-local decisions. Trofin et al. [154] trained
their model with reinforcement learning [77], which does not require labelled training
data. Only eleven features, such as callee_basic_block_count or callsite_height,
were used for training. To not start from a blank model, they initially trained a default
model which imitates the decisions of the LLVM inlining heuristic. Then, their approach
uses the cumulative reward, which is the code size increase or decrease measured from
the compiled program after model usage, as feedback for refining the model. Interestingly,
they have an oppositional take on machine learning in compilers, where they define
understandability of models for compiler engineers secondary to model performance.
To the best of our knowledge, this is the only related work, where a model is actually
deployed in in a state-of-the-art industry compiler.

MLGOPerf Ashouri et al. [9] picked up the MLGO approach and extended it to incor-
porate performance metrics. They created a two-step approach: At first, they trained a

124 Related Work

supervised model to predict the speedup of a method compared to O3, based on features
extracted after inlining. The training data was obtained via autotuning, their approach
being based on OpenTuner [8]. During reinforcement learning, the supervised model
is used to predict the cumulative reward for the method after inlining. This two-step
approach bypasses the problem of identifying the speedup of individual inlining decisions.
We used a similar approach in the past [116], where we predicted the code size impact of
individual code duplications by invoking a model, which was trained to predict the total
code size after the duplication phase, twice. While Ashouri et al. [9] identified multiple
challenges to be solved in future work, the original work of Trofin et al. [154] can be used
in LLVM.

9.5 Machine Learning in Dynamic Compilers

The majority of research in the domain of machine learning in compilers has been con-
ducted for static compilation. However, there have also been a number of approaches
which explore the use of ML in dynamic or just-in-time (JIT) compilers. One of the more
frequently targeted compilers is the one used in the Jikes RVM [5], which is a Java virtual
machine designed during and for research purposes.

The inlining heuristics in the Jikes RVM depended on multiple manually-tuned static
thresholds. Cavazos and O’Boyle [25] used genetic algorithms to search the value space
for this tuple of thresholds. In the end, they replaced the initial inlining thresholds with the
values found to be optimal for the training set, which outperformed the previous heuristic
on the test set as well. While no machine learning model is used during compilation, this
approach shows that data-driven approaches can outperform hand-tuned flags.

Simon et al. [143] developed a more machine-learning-centered approach for replacing the
inlining heuristics in Maxine [159] and in the Java HotSpot VM [71]. Their neural networks
were created by the NEAT [148] framework. NEAT uses a genetic process to create a neural
network from unlabelled data, by evaluating randomly generated neural networks on
benchmarks and using performance measurement for genetic refinements—in our thesis,
we showed how to efficiently extract labelled optimization data. To produce a human-
understandable heuristic, Simon et al. [143] then used the resulting neural network for
producing a data set with artificially created labels. This data set is then used for training
a decision tree. Both, the neural network and the decision tree outperform the heuristic
created in [25], which was implemented as a reference.

Related Work 125

Kulkarni and Cavazos [91] addressed the phase-ordering problem in the Jikes RVM with
neural networks. Instead of predicting the order of a fixed set of N optimizations, they
invoke an ANN after each optimization to select the next most promising optimization
to apply. This process is continued until the network chooses to finish optimizing the
program further. The network itself is created by the NEAT [148] framework, which
circumvents the task of creating labelled data sets, similar to [143]. Kulkarni and Cavazos
[91] report speedups of more than 5% for several benchmarks in terms of peak performance.
The speedups for the total time (including compile time) are significantly smaller, which we
assume is due to the frequent invocation of the neural network between optimizations.

Cavazos and O’Boyle [26] found out that the overall run time of SPECjvm98 benchmarks is
significantly reduced by using compilation strategies specific to each method, rather than
one-size-fits-all global compilation settings. They investigated 20 different optimizations
(e.g., loop unrolling or constant propagation) in the Jikes RVM, which can be either enabled
or disabled. To not exhaustively search the large state space, they generated training data
by executing random sets of optimization combinations and used the best performing
configurations as training labels. The features consist of static information about the
method, such as the portion of branch operations in the method body or whether there is
exception handling code. Using logistic regression, they then devised a model to predict
for new feature sets which optimizations to enable or disable. They also pointed out the
importance of keeping the compile time low for dynamically compiled programs.

Sanchez et al. [140] used support vector machines to learn which optimization parameters
to choose when compiling a method in V9’s [57] Testarossa compiler. While optimiza-
tion type, granularity and ML technique differ from our work, their approach for data
generation shows similarities. They compile and execute multiple versions of a method,
with different per-method optimization parameters, in single program executions. How-
ever, their approach works iteratively. After they have gathered enough measurements
for a version, they perform deoptimization and compile another version with different
parameters. In contrast to our work, multiple versions are never deployed at the same
time, which could be a problem regarding usage noise. Sanchez et al. [140] also use the
processor time stamp counter for their measurements but only collect the total time of a
method instead of its self time.

126 Related Work

9.6 Data Generation

Our research on compilation forking not only addresses how to obtain high-quality training
data from dynamically compiled programs but also facilitates creating large amounts of
training data by being universally applicable to arbitrary user programs. The importance
of versatile training data in large quantities is also outlined in related work [35; 56; 155],
where approaches have emerged to synthesize benchmark programs to obtain larger data
sets for model training.

CLGen Cummins et al. [35] proposed CLgen, a tool for synthesizing OpenCL programs
with pre-defined signatures, based on an LSTM [69] language model. The model was
trained on a large corpus of OpenCL programs, which was collected from GitHub and
sanitized in terms of non-functional variance, such as comments or variable names. In a
controlled experiment, human experts were incapable of detecting whether the programs
were synthesized or created by humans. They also compared CLgen to CLsmith[101],
which was developed for differential testing and produces random OpenCL kernels with
deterministic outputs. Both, their qualitative experiment and a quantitative measure
of similarity to existing benchmark programs, indicate that CLgen produces programs
that looked more as if they were created by humans than CLsmith [35]. However, Tsim-
pourlas et al. [155] criticized that only 2.33% of programs, synthesized by CLgen, actually
compiled.

In a subsequent study, Goens et al. [56] found out that using only data from GitHub
when training a model works significantly better compared to only using the programs
synthesized by CLGen. They identified the lack in feature diversity and the repetitive
nature of the synthesized programs as major causes for performing so poor on their own.
However, Cummins et al. [35] proposed to use synthesized benchmarks only to enhance
genuine data. This indicates that our approach, which can generate data from real user
programs, produces data that is better suited for predictive tasks.

BenchPress In a very recent study, Tsimpourlas et al. [155] addressed the shortcomings
of CLgen and proposed BenchPress as an alternative. BenchPress is based on the deep
learning natural language processing model BERT [43]. However, it is extended by the
concept of holes, which allows the model to learn and to predict lines of code at arbitrary
positions. With this approach, they can control the feature sets in the generated code, which

Related Work 127

is a big advantage over tools such as CLgen or CLsmith. 86% of synthesized programs
did compile (in contrast to 2.33% for CLgen). However, the synthesized programs are
typically very small (3-16 LLVM IR instructions). Applying compilation forking to a
program cannot break anything, therefore having a compilation rate of 100%. However,
the capability of creating benchmarks with pre-defined features is very interesting, as it
enables model training with evenly distributed features from executable programs, rather
than achieving that by data augmentation during pre-processing.

9.7 Entry Barrier

The ability to benefit from machine learning in a compiler is aggravated by a steep learning
curve for compiler engineers when entering the field of machine learning. Frameworks
such as OpenTuner [8], ComPy-Learn [18] or CompilerGym [36] lower the entry barrier by
providing pre-built pipelines, feature sets and algorithms for experimenting with common
compiler optimizations.

ComPy-Learn Brauckmann et al. [18] developed the ComPy-Learn toolbox to provide
compiler engineers with APIs to setup up models with different program representations
and architectures for LLVM. They support program representations such as syntax token
sequences, ASTs or LLVM IR graphs as well as model types, such as recurrent neural
networks (RNN) or (gated) graph neural networks ((G)GNN). However, creating labelled
training data is not part of their pipeline.

CompilerGym Cummins et al. [36] proposed CompilerGym to bring the expertise of
compiler engineers and ML researchers closer together. They formulate compiler opti-
mization tasks as machine learning problems and expose these tasks as environments
via a Python frontend based on the OpenAI Gym [21] interfaces, whereas the backend
handles the interaction with the actual problem domain, e.g., GCC or LLVM. In their
initial implementation, they provided environments for experimenting with LLVM phase
ordering, GCC flag selection and CUDA loop nest generation. For each of these environ-
ments the user can select different feature representations, optimization goals, data sets
and configurations for the optimization itself.

128 Related Work

In our work, we also created a small framework [112; 113] for replacing compiler tasks with
learned models and for configuring the training process, which is described in Chapter 6
and Chapter 7. We would be curious about extending our framework with functionality
of above works, as they do not support dynamic compilers at the moment.

9.8 Self-optimizing Models

Updating models after deployment or tailoring them to specific environments, as we did
in [112], is rarely addressed in related work.

Tartara and Crespi Reghizzi [151] proposed continuous learning of compiler heuristics, which
is a holistic approach for finding a set of optimization heuristics in a static compiler. They
defined a grammar from which new heuristics can be inferred based on a pre-defined set
of program features and mathematical or logical operations on them. For the composition
of heuristics and a particular compilation plan they used genetic algorithms [25; 30;
151]. Their approach outperformed GCC O3 on the selected benchmarks. However, this
approach needs a controlled environment and multiple program runs to compare the
performance and to update heuristics in the static compiler.

MLGO [154], which we discussed in Section 9.4 is based on reinforcement learning and
therefore has the capabilities of refining the model at run time. However, Trofin et al.
[154] state that they focus on deploying models with good generalization and refrain from
frequent refinements after deployment.

129

Chapter 10

Future Work

The goal of this thesis was to improve particular optimization heuristics in a dynamic
compiler by either directly employing machine learning or assisting compiler engineers
during the heuristics designs process, as discussed in Chapter 4 and Chapter 5. Traditional
approaches, based on iterative compilation, do not translate well to dynamic compilers in
terms of consistency and comparable measurements. We contributed to the solution of
these challenges by proposing compilation forking in Chapter 6 which we successfully
used in Chapter 7 and Chapter 8. However, our vision of using machine learning in
dynamic compilers allows for future work, which we briefly outline in this chapter.

Nested Forking In this thesis, compilation forking has only been used for consistently
measuring the impact of single optimization decisions. However, we prototyped an
extension to our approach, which enables nested forking at multiple decision points within
the compilation process. For example, compilation forking could be applied to a method
with a vectorizable loop to create versions with different vector lengths during loop
vectorization. Later, the resulting versions could be forked again with different unroll
factors. This could be used for analyzing the interplay between vectorization and unrolling
parameters. In the context of machine learning, it would allow us to create more holistic
models, predicting a vector of optimization parameters for related optimizations. Nested
forking would impose challenges regarding scalability, as the optimization space would
grow exponentially.

Large Optimization Spaces Iterative compilation for optimizing statically compiled
programs can explore very large optimization spaces, given enough time. Our approach
for dynamic compilation focuses on local optimizations, but ensures comparable measure-

130 Future Work

ments by multi-versioning. The resulting code size growth limits the number of versions
that can be explored in single executions. To explore larger optimization spaces, we would
require a somehow consistent compilation history between different executions to identify
the best performing parameters across multiple executions. As an alternative, future work
could also formulate the machine learning task in a different way. For example, Lau et al.
[93] proposed learning which of two parameter configurations would result in higher
performance for a given function. The training data for such models would not require
to identify global maxima in the parameter space. This would allow to train machine
learning models on data from single executions, even for large optimization spaces.

Capture-and-replay Mpeis et al. [119] used a capture-and-replay approach for exploring
the impact of optimization decisions on a user-specific environment offline. While their
approach has limitations in terms of I/O and side-effecting code regions, it would be
interesting if a capture mechanism could enable iterative replay of dynamically compiled
methods in a consistent way. In addition to their work, we think about capturing the
profiling information gathered during interpretation as well as the order in which methods
were compiled. Injecting this information during the replay process could result in
comparable program versions and enable traditional iterative compilation. However,
exploring n versions of a method would require n replays of the program, which would
increase the data generation time linearly with the number of versions. We still think that
it would be an interesting trade-off to gain scalability and still keeping the requirements
regarding measurement consistency of different versions.

Reinforcement Learning In this work, we focused on random forests to produce human-
readable models and deep neural networks, which are considered state-of-the-art. How-
ever, more recently, reinforcement learning (RL) [77] has received increasing attention,
also in the domain of compiler optimizations [63; 104; 156]. It would be interesting to
investigate RL in the context of our self-optimizing models, which we proposed in Chap-
ter 7. In combination with compilation forking, RL could, at run time, improve the model
after each compilation. Instead of creating multiple versions at once, the state of the
intermediate compilation before the first forking point could be persisted to ensure a
common past for forked compilations. Based on the decisions of the RL model, a specific
version could be compiled from the persisted state. This version could then be evaluated
and could again provide feedback to the model. Coming up of with a feasible architecture
for such an approach and investigating its integration with existing frameworks, such as
SuperSonic [156], could be a very interesting area of future work.

131

Chapter 11

Conclusions

Machine learning has found its way into compiler research many years ago. However,
to the best of our knowledge, only a single static industry compiler [154] uses machine
learning in production. This thesis makes multiple contributions to the field of machine
learning in dynamic compilers:

Machine Learning to Assist Compiler Engineers We showed how machine learning
can be used during the design process of compiler heuristics. The models either point
compiler engineers to flaws in existing hand-crafted heuristics or provide them with
insights about important program features and thresholds. This way, the improved
compiler retains maintainability and understandability, because no machine learning
black boxes are deployed in the production system.

Compilation Forking Compilation forking is an approach for consistently measuring
the impact of method-local optimization decisions in a dynamic compilation environment.
It ensures that multiple versions of a method share the same compilation history and
are executed in a single program execution to expose them to the same environment
state and the same user behavior. Our approach not only enables generating data for
training machine learning models in a dynamic compiler, but also facilitates large-scale
data generation in single executions instead of multiple runs.

Self-optimizing Heuristics We devised an approach where compilation forking together
with deoptimization can be used to automatically update deployed models at run time and
at the user site. This allows us to create self-optimizing compiler heuristics in contrast to

132 Conclusions

general models which are trained only prior to deployment. Our evaluation showed that
highly specialized models can significantly outperform existing hand-crafted heuristics in
a highly tuned industry compiler.

Case Studies on Learned Optimizations Throughout this thesis we conducted mul-
tiple case studies to evaluate our approaches. In the course of this, we created machine
learning models for the optimizations: code duplication, loop peeling, partial loop un-
rolling and unrolling of vectorized loops. These models were centered around the major
success metrics—code size and execution time—for compiled programs. Apart from
state-of-the-art deep learning models, we also showed that simpler decision-tree-based
models can provide good results with the benefit of being human-readable.

The research for this thesis has been conducted in cooperation with Oracle Labs, which
enabled us to implement and benchmark our approaches in one of the highest-optimizing
dynamic Java compilers on the market, the GraalVM compiler.

133

List of Figures

1.1 Abstract depiction of supervised learning for compilers. 5

2.1 GraalVM architecture. 19
2.2 HotSpot’s tiered compilation. 20
2.3 Performance of a method during tiered compilation. 21
2.4 Overview of the GraalVM compiler. 22
2.5 Graal IR example. 23
2.6 Neural network architecture. 26
2.7 Residual neural network with skip connections. 27
2.8 Snippet of a decision tree. 27

3.1 Machine learning in compilers - feedback cycle [110]. 30
3.2 Compilation forking [113] (simplified). Timestamp instrumentation omitted. 33
3.3 Self-optimizing compiler heuristics [112]. Simplified workflow. 35
3.4 Relative speedup compared to default GraalVM [111]. Higher is better. . . 37

List of Tables

9.1 Overview of related PhD theses . 118

135

Bibliography

[1] AARCH64 2023. AARCH64 architecture manual. https://developer.arm.com/

documentation/ddi0600/latest/

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[3] Laksono Adhianto, S Banerjee, M. Fagan, M Krentel, Gabriel Marin, John Mellor-
Crummey, and Nathan Tallent. 2010. HPCTOOLKIT: Tools for Performance Analysis
of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience
22, 6 (apr 2010), 685–701. https://doi.org/10.1002/cpe.1553

[4] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. 2004. Finding
Effective Compilation Sequences. In Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (Washington, DC,
USA) (LCTES ’04). Association for Computing Machinery, New York, NY, USA,
231–239. https://doi.org/10.1145/997163.997196

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi,
S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T.
Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. 2000. The Jalapeño virtual machine. IBM Systems
Journal 39, 1 (2000), 211–238. https://doi.org/10.1147/sj.391.0211

https://developer.arm.com/documentation/ddi0600/latest/
https://developer.arm.com/documentation/ddi0600/latest/
https://www.tensorflow.org/
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1145/997163.997196
https://doi.org/10.1147/sj.391.0211

136 Bibliography

[6] Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Q. Al-Dujaili, Ye Duan,
Omran Al-Shamma, Jesus Santamaría, Mohammed Abdulraheem Fadhel, Muthana
Al-Amidie, and Laith Farhan. 2021. Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions. Journal of Big Data 8 (2021).

[7] AMD64 2023. AMD64 architecture manual. https://www.amd.com/system/files/

TechDocs/24594.pdf

[8] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. OpenTuner: An
extensible framework for program autotuning. In 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT). IEEE Computer Society,
303–315. https://doi.org/10.1145/2628071.2628092

[9] Amir H. Ashouri, Mostafa Elhoushi, Yuzhe Hua, Xiang Wang, Muhammad Asif
Manzoor, Bryan Chan, and Yaoqing Gao. 2022. Work-in-Progress: MLGOPerf: An
ML Guided Inliner to Optimize Performance. In 2022 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES). 3–4. https:

//doi.org/10.1109/CASES55004.2022.00008 long version: https://arxiv.org/

pdf/2207.08389.pdf.

[10] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. 2018. A Survey on Compiler Autotuning Using Machine Learning. ACM
Comput. Surv. 51, 5, Article 96 (Sept. 2018), 42 pages. https://doi.org/10.1145/

3197978

[11] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John
Cavazos, and Cristina Silvano. 2016. COBAYN: Compiler Autotuning Framework
Using Bayesian Networks. ACM Trans. Archit. Code Optim. 13, 2, Article 21 (jun
2016), 25 pages. https://doi.org/10.1145/2928270

[12] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N.
Bershad. 1996. Fast, Effective Dynamic Compilation. In Proceedings of the ACM SIG-
PLAN 1996 Conference on Programming Language Design and Implementation (Philadel-
phia, Pennsylvania, USA) (PLDI ’96). Association for Computing Machinery, New
York, NY, USA, 149–159. https://doi.org/10.1145/231379.231409

[13] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transfor-
mations for High-Performance Computing. ACM Comput. Surv. 26, 4 (Dec. 1994),
345–420. https://doi.org/10.1145/197405.197406

https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CASES55004.2022.00008
https://doi.org/10.1109/CASES55004.2022.00008
https://arxiv.org/pdf/2207.08389.pdf
https://arxiv.org/pdf/2207.08389.pdf
https://doi.org/10.1145/3197978
https://doi.org/10.1145/3197978
https://doi.org/10.1145/2928270
https://doi.org/10.1145/231379.231409
https://doi.org/10.1145/197405.197406

Bibliography 137

[14] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence
Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold. Proc. ACM Program. Lang.
1, OOPSLA, Article 52 (oct 2017), 27 pages. https://doi.org/10.1145/3133876

[15] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

[16] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (Port-
land, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New
York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[17] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike OBoyle, and Erven Rohou.
1998. Iterative compilation in a non-linear optimisation space. Workshop on Profile and
Feedback-Directed Compilation (03 1998). https://hal.inria.fr/inria-00475919/

document

[18] Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. 2020. ComPy-
Learn: A toolbox for exploring machine learning representations for compilers. In
2020 Forum for Specification and Design Languages (FDL). 1–4. https://doi.org/10.

1109/FDL50818.2020.9232946

[19] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-Based Graph Representations for Deep Learning Models of Code.
In Proceedings of the 29th International Conference on Compiler Construction (San Diego,
CA, USA) (CC 2020). Association for Computing Machinery, New York, NY, USA,
201–211. https://doi.org/10.1145/3377555.3377894

[20] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. 1984. Classification and Regres-
sion Trees. Taylor & Francis. https://books.google.at/books?id=JwQx-WOmSyQC

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016). https://doi.org/10.

48550/ARXIV.1606.01540

[22] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael
Mozer, and Benjamin Zorn. 1997. Evidence-Based Static Branch Prediction Using

https://doi.org/10.1145/3133876
https://doi.org/10.1145/1167473.1167488
https://hal.inria.fr/inria-00475919/document
https://hal.inria.fr/inria-00475919/document
https://doi.org/10.1109/FDL50818.2020.9232946
https://doi.org/10.1109/FDL50818.2020.9232946
https://doi.org/10.1145/3377555.3377894
https://books.google.at/books?id=JwQx-WOmSyQC
https://doi.org/10.48550/ARXIV.1606.01540
https://doi.org/10.48550/ARXIV.1606.01540

138 Bibliography

Machine Learning. ACM Trans. Program. Lang. Syst. 19, 1 (jan 1997), 188–222. https:

//doi.org/10.1145/239912.239923

[23] John Cavazos. 2005. Automatically Constructing Compiler Optimization Heuristics using
Supervised Learning. Ph. D. Dissertation. Amherst, MA, USA. https://www.eecis.

udel.edu/~cavazos/thesis.pdf

[24] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,
and Olivier Temam. 2007. Rapidly Selecting Good Compiler Optimizations Us-
ing Performance Counters. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO ’07). IEEE Computer Society, USA, 185–197.
https://doi.org/10.1109/CGO.2007.32

[25] John Cavazos and Michael F. P. O’Boyle. 2005. Automatic Tuning of Inlining Heuris-
tics. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05). IEEE
Computer Society, USA, 14. https://doi.org/10.1109/SC.2005.14

[26] John Cavazos and Michael F. P. O’Boyle. 2006. Method-Specific Dynamic Compi-
lation Using Logistic Regression. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (Port-
land, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New
York, NY, USA, 229–240. https://doi.org/10.1145/1167473.1167492

[27] Stefano Cazzulani. 2012. Octane: The JavaScript benchmark suite
for the modern web. https://blog.chromium.org/2012/08/

octane-javascript-benchmark-suite-for.html

[28] François Chollet et al. 2015. Keras. https://keras.io.

[29] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Intermediate Repre-
sentation. In Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Representa-
tions (San Francisco, California, USA) (IR ’95). Association for Computing Machinery,
New York, NY, USA, 35–49. https://doi.org/10.1145/202529.202534

[30] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for
Reduced Code Space Using Genetic Algorithms. SIGPLAN Not. 34, 7 (May 1999),
1–9. https://doi.org/10.1145/315253.314414

[31] Keith D. Cooper, Devika Subramanian, and Linda Torczon. 2002. Adaptive Op-
timizing Compilers for the 21st Century. J. Supercomput. 23, 1 (Aug. 2002), 7–22.
https://doi.org/10.1023/A:1015729001611

https://doi.org/10.1145/239912.239923
https://doi.org/10.1145/239912.239923
https://www.eecis.udel.edu/~cavazos/thesis.pdf
https://www.eecis.udel.edu/~cavazos/thesis.pdf
https://doi.org/10.1109/CGO.2007.32
https://doi.org/10.1109/SC.2005.14
https://doi.org/10.1145/1167473.1167492
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
https://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
https://keras.io
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/315253.314414
https://doi.org/10.1023/A:1015729001611

Bibliography 139

[32] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach. Learn.
20, 3 (sep 1995), 273–297. https://doi.org/10.1023/A:1022627411411

[33] Chris Cummins. 2020. Deep Learning for Compilers. Ph. D. Dissertation. Edinburgh,
Scotland, UK. https://era.ed.ac.uk/handle/1842/36866

[34] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017. End-to-
End Deep Learning of Optimization Heuristics. In 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT). 219–232. https://doi.

org/10.1109/PACT.2017.24

[35] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017. Synthe-
sizing Benchmarks for Predictive Modeling. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press,
86–99.

[36] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez,
Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, Yuandong Tian, and Hugh
Leather. 2022. CompilerGym: Robust, Performant Compiler Optimization Environ-
ments for AI Research. In Proceedings of the 20th IEEE/ACM International Symposium
on Code Generation and Optimization (Virtual Event, Republic of Korea) (CGO ’22).
IEEE Press, 92–105. https://doi.org/10.1109/CGO53902.2022.9741258

[37] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. 2008. Supervised
Learning. Springer Berlin Heidelberg, Berlin, Heidelberg, 21–49. https://doi.org/

10.1007/978-3-540-75171-7_2

[38] Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössenböck. 2016.
Efficient and Thread-Safe Objects for Dynamically-Typed Languages. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016).
Association for Computing Machinery, New York, NY, USA, 642–659. https:

//doi.org/10.1145/2983990.2984001

[39] Benoit Daloze, Chris Seaton, Daniele Bonetta, and Hanspeter Mössenböck. 2015.
Techniques and Applications for Guest-Language Safepoints. In Proceedings of
the 10th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (Prague, Czech Republic) (ICOOOLPS ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 10 pages.
https://doi.org/10.1145/2843915.2843921

https://doi.org/10.1023/A:1022627411411
https://era.ed.ac.uk/handle/1842/36866
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/CGO53902.2022.9741258
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1145/2983990.2984001
https://doi.org/10.1145/2983990.2984001
https://doi.org/10.1145/2843915.2843921

140 Bibliography

[40] Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank.
2018. Parallelization of Dynamic Languages: Synchronizing Built-in Collections.
Proc. ACM Program. Lang. 2, OOPSLA, Article 108 (oct 2018), 30 pages. https:

//doi.org/10.1145/3276478

[41] Daniele Cono D’Elia and Camil Demetrescu. 2018. On-Stack Replacement, Distilled.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing
Machinery, New York, NY, USA, 166–180. https://doi.org/10.1145/3192366.

3192396

[42] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Salt Lake City, Utah, USA) (POPL ’84).
Association for Computing Machinery, New York, NY, USA, 297–302. https:

//doi.org/10.1145/800017.800542

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 4171–
4186. https://doi.org/10.18653/v1/N19-1423

[44] Christophe Dubach. 2009. Using Machine-Learning to Efficiently Explore the Archi-
tecture/Compiler Co-Design Space. Ph. D. Dissertation. Edinburgh, Scotland, UK.
https://era.ed.ac.uk/handle/1842/3867

[45] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wimmer,
and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative Intermediate
Representation. In Proceedings of the Asia-Pacific Programming Languages and Compilers
Workshop. 1–9. https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.

pdf

[46] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,
and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM Workshop on
Virtual Machines and Intermediate Languages (Indianapolis, Indiana, USA) (VMIL
’13). Association for Computing Machinery, New York, NY, USA, 1–10. https:

//doi.org/10.1145/2542142.2542143

https://doi.org/10.1145/3276478
https://doi.org/10.1145/3276478
https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.18653/v1/N19-1423
https://era.ed.ac.uk/handle/1842/3867
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2542142.2542143

Bibliography 141

[47] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter
Mössenböck. 2016. Trace-Based Register Allocation in a JIT Compiler. In Proceedings
of the 13th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (Lugano, Switzerland) (PPPJ ’16).
Association for Computing Machinery, New York, NY, USA, Article 14, 11 pages.
https://doi.org/10.1145/2972206.2972211

[48] Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck. 2017.
Trace Register Allocation Policies: Compile-Time vs. Performance Trade-Offs. In
Proceedings of the 14th International Conference on Managed Languages and Runtimes
(Prague, Czech Republic) (ManLang 2017). Association for Computing Machinery,
New York, NY, USA, 92–104. https://doi.org/10.1145/3132190.3132209

[49] Peng fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery, and
Wei chung Hsu. 2007. Dynamic profile driven code version selection. In
the 11th Annual Workshop on the Interaction between Compilers and Computer Ar-
chitecture. https://www.researchgate.net/publication/228952289_Dynamic_

Profile_Driven_Code_Version_Selection

[50] Grigory Fursin. 2004. Iterative Compilation and Performance Prediction for Numerical
Applications. Ph. D. Dissertation. Edinburgh, Scotland, UK. https://era.ed.ac.

uk/handle/1842/565

[51] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. 2005. A Prac-
tical Method for Quickly Evaluating Program Optimizations. In High Performance
Embedded Architectures and Compilers, Nacho Conte, Tomband Navarro, Wen-mei W.
Hwu, Mateo Valero, and Theo Ungerer (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 29–46.

[52] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Bilha Mendelson, Ayal Zaks, Eric Courtois, François
Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christopher
Williams, and Michael O’Boyle. 2011. Milepost GCC: Machine Learning Enabled
Self-tuning Compiler. International Journal of Parallel Programming 39 (06 2011),
296–327. https://doi.org/10.1007/s10766-010-0161-2

[53] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Ayal Zaks,
Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams,
Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and François Bodin.
2008. MILEPOST GCC: machine learning based research compiler. Proceedings of the
GCC Developers’ Summit 2008 (06 2008).

https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3132190.3132209
https://www.researchgate.net/publication/228952289_Dynamic_Profile_Driven_Code_Version_Selection
https://www.researchgate.net/publication/228952289_Dynamic_Profile_Driven_Code_Version_Selection
https://era.ed.ac.uk/handle/1842/565
https://era.ed.ac.uk/handle/1842/565
https://doi.org/10.1007/s10766-010-0161-2

142 Bibliography

[54] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Pro-
cess—AnApproach to a Compiler-Compiler. Higher Order Symbol. Comput.
12, 4 (dec 1999), 381–391. https://doi.org/10.1023/A:1010095604496

[55] GCC 2023. GNU Compiler Collection. https://gcc.gnu.org/

[56] Andrés Goens, Alexander Brauckmann, Sebastian Ertel, Chris Cummins, Hugh
Leather, and Jeronimo Castrillon. 2019. A Case Study on Machine Learning for
Synthesizing Benchmarks. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages (Phoenix, AZ, USA)
(MAPL 2019). Association for Computing Machinery, New York, NY, USA, 38–46.
https://doi.org/10.1145/3315508.3329976

[57] Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark Stoodley, and Vijay Sundare-
san. 2004. JavaTM Just-in-Time Compiler and Virtual Machine Improvements for
Server and Middleware Applications. In Proceedings of the 3rd Conference on Virtual
Machine Research And Technology Symposium - Volume 3 (San Jose, California) (VM’04).
USENIX Association, USA, 12.

[58] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter
Mössenböck. 2014. TruffleC: Dynamic Execution of C on a Java Virtual Machine. In
Proceedings of the 2014 International Conference on Principles and Practices of Program-
ming on the Java Platform: Virtual Machines, Languages, and Tools (Cracow, Poland)
(PPPJ ’14). Association for Computing Machinery, New York, NY, USA, 17–26.
https://doi.org/10.1145/2647508.2647528

[59] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. Memory-Safe Execution of C on a Java VM. In
Proceedings of the 10th ACM Workshop on Programming Languages and Analysis for
Security (Prague, Czech Republic) (PLAS’15). Association for Computing Machinery,
New York, NY, USA, 16–27. https://doi.org/10.1145/2786558.2786565

[60] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. High-Performance Cross-Language Interoperability
in a Multi-Language Runtime. In Proceedings of the 11th Symposium on Dynamic Lan-
guages (Pittsburgh, PA, USA) (DLS 2015). Association for Computing Machinery,
New York, NY, USA, 78–90. https://doi.org/10.1145/2816707.2816714

[61] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössenböck.
2015. Dynamically Composing Languages in a Modular Way: Supporting C Exten-
sions for Dynamic Languages. In Proceedings of the 14th International Conference on

https://doi.org/10.1023/A:1010095604496
https://gcc.gnu.org/
https://doi.org/10.1145/3315508.3329976
https://doi.org/10.1145/2647508.2647528
https://doi.org/10.1145/2786558.2786565
https://doi.org/10.1145/2816707.2816714

Bibliography 143

Modularity (Fort Collins, CO, USA) (MODULARITY 2015). Association for Comput-
ing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/2724525.

2728790

[62] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
2001. MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the Fourth Annual IEEE International Workshop on Workload Charac-
terization. WWC-4 (Cat. No.01EX538). 3–14. https://doi.org/10.1109/WWC.2001.

990739

[63] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic,
and Ion Stoica. 2020. NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization (San Diego, CA, USA) (CGO 2020).
Association for Computing Machinery, New York, NY, USA, 242–255. https:

//doi.org/10.1145/3368826.3377928

[64] Christian Häubl and Hanspeter Mössenböck. 2011. Trace-Based Compilation for
the Java HotSpot Virtual Machine. In Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java (Kongens Lyngby, Denmark) (PPPJ
’11). Association for Computing Machinery, New York, NY, USA, 129–138. https:

//doi.org/10.1145/2093157.2093176

[65] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. 2012. Evaluation
of Trace Inlining Heuristics for Java. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing (Trento, Italy) (SAC ’12). Association for Computing Machinery,
New York, NY, USA, 1871–1876. https://doi.org/10.1145/2245276.2232084

[66] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. 2014. Trace
Transitioning and Exception Handling in a Trace-Based JIT Compiler for Java.
ACM Trans. Archit. Code Optim. 11, 1, Article 6 (feb 2014), 26 pages. https:

//doi.org/10.1145/2579673

[67] Kaiming He, Xiangyu Zhang, and Shaoqing Ren andJian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
http://arxiv.org/abs/1512.03385

[68] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, Vol. 1. 278–282 vol.1. https:

//doi.org/10.1109/ICDAR.1995.598994

https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/2245276.2232084
https://doi.org/10.1145/2579673
https://doi.org/10.1145/2579673
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994

144 Bibliography

[69] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[70] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized Code
with Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation (San Francisco, California, USA)
(PLDI ’92). Association for Computing Machinery, New York, NY, USA, 32–43.
https://doi.org/10.1145/143095.143114

[71] HotSpot JVM. 2023. HotSpot Runtime Overview. https://openjdk.org/groups/

hotspot/docs/RuntimeOverview.html

[72] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume 37
(Lille, France) (ICML’15). JMLR.org, 448–456.

[73] Java 20. 2023. Java Language Specification. https://docs.oracle.com/javase/

specs/jls/se20/html/index.html

[74] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis, EunJung Park, and Jo-
hannes Doerfert. 2021. Towards Compile-Time-Reducing Compiler Optimization
Selection via Machine Learning. In 50th International Conference on Parallel Process-
ing Workshop (Lemont, IL, USA) (ICPP Workshops ’21). Association for Computing
Machinery, New York, NY, USA, Article 23, 6 pages. https://doi.org/10.1145/

3458744.3473355

[75] JVM 20. 2023. Java Virtual Machine Specification. https://docs.oracle.com/

javase/specs/jvms/se20/html/

[76] JVMCI 2023. JCM Compiler Interface. https://openjdk.org/jeps/243

[77] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Re-
inforcement Learning: A Survey. J. Artif. Int. Res. 4, 1 (May 1996), 237–285.
https://doi.org/10.1613/jair.301

[78] Sebastian Kloibhofer. 2021. Run-Time Data Analysis to Drive Compiler Optimiza-
tions. In Companion Proceedings of the 2021 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity (Chicago,
IL, USA) (SPLASH Companion 2021). Association for Computing Machinery, New
York, NY, USA, 9–12. https://doi.org/10.1145/3484271.3484974

https://doi.org/10.1145/143095.143114
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://openjdk.org/groups/hotspot/docs/RuntimeOverview.html
https://docs.oracle.com/javase/specs/jls/se20/html/index.html
https://docs.oracle.com/javase/specs/jls/se20/html/index.html
https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/3458744.3473355
https://docs.oracle.com/javase/specs/jvms/se20/html/
https://docs.oracle.com/javase/specs/jvms/se20/html/
https://openjdk.org/jeps/243
https://doi.org/10.1613/jair.301
https://doi.org/10.1145/3484271.3484974

Bibliography 145

[79] Sebastian Kloibhofer, Lukas Makor, David Leopoldseder, Daniele Bonetta, Lukas
Stadler, and Hanspeter Mössenböck. 2023. Control Flow Duplication for Columnar
Arrays in a Dynamic Compiler. The Art, Science, and Engineering of Programming 7
(2023). accepted for publication.

[80] P. Knijnenburg, T. Kisuki, and M. O’Boyle. 2002. Iterative Compilation. 171–187.
https://doi.org/10.1007/3-540-45874-3_10

[81] Ron Kohavi. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2 (Montreal, Quebec, Canada) (IJCAI’95). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1137–1143.

[82] Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape Analysis in the
Context of Dynamic Compilation and Deoptimization. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environments (Chicago, IL,
USA) (VEE ’05). ACM, New York, NY, USA, 111–120. https://doi.org/10.1145/

1064979.1064996

[83] Thomas Kotzmann and Hanspeter Mossenbock. 2007. Run-Time Support for Opti-
mizations Based on Escape Analysis. In International Symposium on Code Generation
and Optimization (CGO’07). 49–60. https://doi.org/10.1109/CGO.2007.34

[84] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot&Trade; Client
Compiler for Java 6. ACM Transactions on Architecture and Code Optimization 5, 1,
Article 7 (May 2008), 32 pages. https://doi.org/10.1145/1369396.1370017

[85] Jacob Kreindl, Daniele Bonetta, and Hanspeter Mössenböck. 2019. Towards Efficient,
Multi-Language Dynamic Taint Analysis. In Proceedings of the 16th ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes (Athens,
Greece) (MPLR 2019). Association for Computing Machinery, New York, NY, USA,
85–94. https://doi.org/10.1145/3357390.3361028

[86] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter
Mössenböck. 2020. Multi-Language Dynamic Taint Analysis in a Polyglot Virtual
Machine. In Proceedings of the 17th International Conference on Managed Programming
Languages and Runtimes (Virtual, UK) (MPLR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 15–29. https://doi.org/10.1145/3426182.3426184

[87] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter
Mössenböck. 2021. Low-Overhead Multi-Language Dynamic Taint Analysis on

https://doi.org/10.1007/3-540-45874-3_10
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1109/CGO.2007.34
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/3357390.3361028
https://doi.org/10.1145/3426182.3426184

146 Bibliography

Managed Runtimes through Speculative Optimization. In Proceedings of the 18th
ACM SIGPLAN International Conference on Managed Programming Languages and
Runtimes (Münster, Germany) (MPLR 2021). Association for Computing Machinery,
New York, NY, USA, 70–87. https://doi.org/10.1145/3475738.3480939

[88] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter
Mössenböck. 2022. Dynamic Taint Analysis with Label-Defined Semantics. In
Proceedings of the 19th International Conference on Managed Programming Languages and
Runtimes (Brussels, Belgium) (MPLR ’22). Association for Computing Machinery,
New York, NY, USA, 64–84. https://doi.org/10.1145/3546918.3546927

[89] Michael Kruse, Hal Finkel, and Xingfu Wu. 2020. Autotuning Search Space for Loop
Transformations. 2020 IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar) (2020), 12–22.

[90] Sameer Kulkarni. 2014. Improving Compiler Optimizations using Machine Learn-
ing. Ph. D. Dissertation. Newark, DE, USA. https://udspace.udel.edu/items/

3e5914d3-1579-46fc-b8aa-7fe406088741

[91] Sameer Kulkarni and John Cavazos. 2012. Mitigating the Compiler Optimization
Phase-Ordering Problem Using Machine Learning. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications
(Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New
York, NY, USA, 147–162. https://doi.org/10.1145/2384616.2384628

[92] Chris Lattner and Vikram Adve. 2004. LLVM: a compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.

1281665

[93] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006. Online Perfor-
mance Auditing: Using Hot Optimizations without Getting Burned. In Proceedings
of the 27th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Ottawa, Ontario, Canada) (PLDI ’06). Association for Computing Machinery,
New York, NY, USA, 239–251. https://doi.org/10.1145/1133981.1134010

[94] Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss. 2020.
Runtime Multi-Versioning and Specialization inside a Memoized Speculative Loop
Optimizer. In Proceedings of the 29th International Conference on Compiler Construction

https://doi.org/10.1145/3475738.3480939
https://doi.org/10.1145/3546918.3546927
https://udspace.udel.edu/items/3e5914d3-1579-46fc-b8aa-7fe406088741
https://udspace.udel.edu/items/3e5914d3-1579-46fc-b8aa-7fe406088741
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1133981.1134010

Bibliography 147

(San Diego, CA, USA) (CC 2020). Association for Computing Machinery, New York,
NY, USA, 96–107. https://doi.org/10.1145/3377555.3377886

[95] Hugh Leather. 2010. Machine Learning in Compilers. Ph. D. Dissertation. Edinburgh,
Scotland, UK. https://era.ed.ac.uk/handle/1842/9810

[96] Hugh Leather and Chris Cummins. 2020. Machine Learning in Compilers: Past,
Present and Future. In 2020 Forum for Specification and Design Languages (FDL). IEEE
Computer Society, 1–8. https://doi.org/10.1109/FDL50818.2020.9232934

[97] David Leopoldseder. 2017. Simulation-Based Code Duplication for Enhancing
Compiler Optimizations. In Proceedings Companion of the 2017 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages, and Applications: Software
for Humanity (Vancouver, BC, Canada) (SPLASH Companion 2017). Association for
Computing Machinery, New York, NY, USA, 10–12. https://doi.org/10.1145/

3135932.3135935

[98] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas
Würthinger, and Hanspeter Mössenböck. 2018. Fast-Path Loop Unrolling of Non-
Counted Loops to Enable Subsequent Compiler Optimizations. In Proceedings of
the 15th International Conference on Managed Languages & Runtimes (Linz, Austria)
(ManLang ’18). Association for Computing Machinery, New York, NY, USA, Article
2, 13 pages. https://doi.org/10.1145/3237009.3237013

[99] David Leopoldseder, Lukas Stadler, Manuel Rigger, Thomas Würthinger, and
Hanspeter Mössenböck. 2018. A Cost Model for a Graph-Based Intermediate-
Representation in a Dynamic Compiler. In Proceedings of the 10th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages (Boston, MA,
USA) (VMIL 2018). Association for Computing Machinery, New York, NY, USA,
26–35. https://doi.org/10.1145/3281287.3281290

[100] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of the
2018 International Symposium on Code Generation and Optimization (Vienna, Austria)
(CGO 2018). Association for Computing Machinery, New York, NY, USA, 126–137.
https://doi.org/10.1145/3168811

[101] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-Core Compiler Fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Portland, OR, USA)

https://doi.org/10.1145/3377555.3377886
https://era.ed.ac.uk/handle/1842/9810
https://doi.org/10.1109/FDL50818.2020.9232934
https://doi.org/10.1145/3135932.3135935
https://doi.org/10.1145/3135932.3135935
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3281287.3281290
https://doi.org/10.1145/3168811

148 Bibliography

(PLDI ’15). Association for Computing Machinery, New York, NY, USA, 65–76.
https://doi.org/10.1145/2737924.2737986

[102] Lukas Makor. 2021. Run-Time Data Analysis in Dynamic Runtimes. In Companion
Proceedings of the 2021 ACM SIGPLAN International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity (Chicago, IL, USA) (SPLASH
Companion 2021). Association for Computing Machinery, New York, NY, USA, 6–8.
https://doi.org/10.1145/3484271.3484973

[103] Lukas Makor, Sebastian Kloibhofer, David Leopoldseder, Daniele Bonetta, Lukas
Stadler, and Hanspeter Mössenböck. 2022. Automatic Array Transformation to
Columnar Storage At Run Time. In Proceedings of the 19th International Conference
on Managed Programming Languages and Runtimes (Brussels, Belgium) (MPLR ’22).
Association for Computing Machinery, New York, NY, USA, 16–28. https://doi.

org/10.1145/3546918.3546919

[104] Rahim Mammadli, Ali Jannesari, and Felix A. Wolf. 2020. Static Neural Compiler
Optimization via Deep Reinforcement Learning. 2020 IEEE/ACM 6th Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical
Parallelism for Exascale Computing (HiPar) (2020), 1–11.

[105] Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel. 2021. Learning
to Make Compiler Optimizations More Effective. In Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Programming (Virtual, Canada) (MAPS
2021). Association for Computing Machinery, New York, NY, USA, 9–20. https:

//doi.org/10.1145/3460945.3464952

[106] Charith Mendis. 2020. Towards Automated Construction of Compiler Optimizations.
Ph. D. Dissertation. Cambridge, MA, USA. https://groups.csail.mit.edu/

commit/papers/2020/mendis-thesis.pdf

[107] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Optimized Super-
word Level Parallelism Framework. Proc. ACM Program. Lang. 2, OOPSLA, Article
110 (oct 2018), 28 pages. https://doi.org/10.1145/3276480

[108] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks. In Proceedings of the 36th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 4505–4515. http://proceedings.mlr.press/

v97/mendis19a.html

https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3484271.3484973
https://doi.org/10.1145/3546918.3546919
https://doi.org/10.1145/3546918.3546919
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/3460945.3464952
https://groups.csail.mit.edu/commit/papers/2020/mendis-thesis.pdf
https://groups.csail.mit.edu/commit/papers/2020/mendis-thesis.pdf
https://doi.org/10.1145/3276480
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html

Bibliography 149

[109] Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and Michael
Carbin. 2019. Compiler Auto-Vectorization with Imitation Learning. Curran Associates
Inc., Red Hook, NY, USA. https://proceedings.neurips.cc/paper/2019/file/

d1d5923fc822531bbfd9d87d4760914b-Paper.pdf

[110] Raphael Mosaner. 2020. Machine Learning to Ease Understanding of Data Driven
Compiler Optimizations. In Companion Proceedings of the 2020 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (Virtual, USA) (SPLASH Companion 2020). Association for Computing Ma-
chinery, New York, NY, USA, 4–6. https://doi.org/10.1145/3426430.3429451

[111] Raphael Mosaner, Gergö Barany, David Leopoldseder, and Hanspeter Mössenböck.
2022. Improving Vectorization Heuristics in a Dynamic Compiler with Machine
Learning Models. In Proceedings of the 14th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages (Auckland, New Zealand) (VMIL
2022). Association for Computing Machinery, New York, NY, USA, 36–47. https:

//doi.org/10.1145/3563838.3567679

[112] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and
Hanspeter Mössenböck. 2022. Machine-Learning-Based Self-Optimizing Compiler
Heuristics. In Proceedings of the 19th International Conference on Managed Programming
Languages and Runtimes (Brussels, Belgium) (MPLR ’22). Association for Comput-
ing Machinery, New York, NY, USA, 98–111. https://doi.org/10.1145/3546918.

3546921

[113] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and
Hanspeter Mössenböck. 2022. Compilation Forking: A Fast and Flexible Way
of Generating Data for Compiler-Internal Machine Learning Tasks. The Art,
Science, and Engineering of Programming 7 (2022). https://doi.org/10.22152/

programming-journal.org/2023/7/3

[114] Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland Schatz, and
Hanspeter Mössenböck. 2019. Supporting On-Stack Replacement in Unstructured
Languages by Loop Reconstruction and Extraction. In Proceedings of the 16th ACM
SIGPLAN International Conference on Managed Programming Languages and Runtimes
(Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3357390.3361030

[115] Raphael Mosaner, David Leopoldseder, and Lukas Stadler. 2022. Online Machine
Learning Based Compilation. U.S. Patent Number 11.392.356, filed February 26th,
2021, Issued July 19th, 2022.

https://proceedings.neurips.cc/paper/2019/file/d1d5923fc822531bbfd9d87d4760914b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d1d5923fc822531bbfd9d87d4760914b-Paper.pdf
https://doi.org/10.1145/3426430.3429451
https://doi.org/10.1145/3563838.3567679
https://doi.org/10.1145/3563838.3567679
https://doi.org/10.1145/3546918.3546921
https://doi.org/10.1145/3546918.3546921
https://doi.org/10.22152/programming-journal.org/2023/7/3
https://doi.org/10.22152/programming-journal.org/2023/7/3
https://doi.org/10.1145/3357390.3361030

150 Bibliography

[116] Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter Mössenböck.
2021. Using Machine Learning to Predict the Code Size Impact of Duplication Heuris-
tics in a Dynamic Compiler. In Proceedings of the 18th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes (MPLR 2021). Asso-
ciation for Computing Machinery, 127–135. https://doi.org/10.1145/3475738.

3480943

[117] Hanspeter Mössenböck. 2000. Adding static single assignment form and a graph coloring
register allocator to the Java HotSpotTM client compiler. Technical Report. Citeseer.
https://ssw.jku.at/Research/Reports/Report15.PDF

[118] Hanspeter Mössenböck and Michael Pfeiffer. 2002. Linear Scan Register Allocation
in the Context of SSA Form and Register Constraints. In Compiler Construction,
R. Nigel Horspool (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229–246.

[119] Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood, and Hugh Leather. 2021. De-
veloper and User-Transparent Compiler Optimization for Interactive Applications.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for
Computing Machinery, New York, NY, USA, 268–281. https://doi.org/10.1145/

3453483.3454043

[120] ONNX 2021. ONNX Runtime. https://onnxruntime.ai/.

[121] OpenJDK. 2023. OpenJDK. https://openjdk.org/

[122] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotspotTM
Server Compiler. In Proceedings of the 2001 Symposium on JavaTM Virtual Machine Re-
search and Technology Symposium - Volume 1 (Monterey, California) (JVM’01). USENIX
Association, USA, 1.

[123] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using Graph-Based
Program Characterization for Predictive Modeling. In Proceedings of the Tenth In-
ternational Symposium on Code Generation and Optimization (San Jose, California)
(CGO ’12). Association for Computing Machinery, New York, NY, USA, 196–206.
https://doi.org/10.1145/2259016.2259042

[124] Eunjung Park, Sameer Kulkarni, and John Cavazos. 2011. An Evaluation of Different
Modeling Techniques for Iterative Compilation. In Proceedings of the 14th International
Conference on Compilers, Architectures and Synthesis for Embedded Systems (Taipei,
Taiwan) (CASES ’11). Association for Computing Machinery, New York, NY, USA,
65–74. https://doi.org/10.1145/2038698.2038711

https://doi.org/10.1145/3475738.3480943
https://doi.org/10.1145/3475738.3480943
https://ssw.jku.at/Research/Reports/Report15.PDF
https://doi.org/10.1145/3453483.3454043
https://doi.org/10.1145/3453483.3454043
https://onnxruntime.ai/
https://openjdk.org/
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2038698.2038711

Bibliography 151

[125] Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon, and
Scott Mahlke. 2022. SRTuner: Effective Compiler Optimization Customization by
Exposing Synergistic Relations. In Proceedings of the 20th IEEE/ACM International Sym-
posium on Code Generation and Optimization (Virtual Event, Republic of Korea) (CGO
’22). IEEE Press, 118–130. https://doi.org/10.1109/CGO53902.2022.9741263

[126] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037. https://dl.acm.org/

doi/10.5555/3454287.3455008

[127] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Peter
Prettenhofer, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Ron Weiss, Vincent
Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the Journal of machine
Learning research 12 (2011), 2825–2830. https://www.jmlr.org/papers/volume12/

pedregosa11a/pedregosa11a.pdf

[128] Filip Pizlo. 2014. JetStream Benchmark Suite. http://browserbench.org/

JetStream/

[129] Adam Pocock. 2021. Tribuo: Machine Learning with Provenance in Java. (2021).
https://doi.org/10.48550/ARXIV.2110.03022

[130] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ, USA)
(PLDI 2019). Association for Computing Machinery, New York, NY, USA, 31–47.
https://doi.org/10.1145/3314221.3314637

[131] Manuel Rigger. 2016. Sulong: Memory Safe and Efficient Execution of LLVM-Based
Languages. In ECOOP 2016 Doctoral Symposium (Rome, Italy) (ECOOP DS 2016).
http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf

[132] Manuel Rigger. 2018. Sandboxed Execution of C and Other Unsafe Languages on
the Java Virtual Machine. In Companion Proceedings of the 2nd International Conference
on the Art, Science, and Engineering of Programming (Nice, France) (Programming
’18). Association for Computing Machinery, New York, NY, USA, 227–229. https:

//doi.org/10.1145/3191697.3213795

https://doi.org/10.1109/CGO53902.2022.9741263
https://dl.acm.org/doi/10.5555/3454287.3455008
https://dl.acm.org/doi/10.5555/3454287.3455008
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://browserbench.org/JetStream/
http://browserbench.org/JetStream/
https://doi.org/10.48550/ARXIV.2110.03022
https://doi.org/10.1145/3314221.3314637
http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf
https://doi.org/10.1145/3191697.3213795
https://doi.org/10.1145/3191697.3213795

152 Bibliography

[133] Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. 2016. Sulong -
Execution of LLVM-Based Languages on the JVM: Position Paper. In Proceedings
of the 11th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (Rome, Italy) (ICOOOLPS ’16). Association for
Computing Machinery, New York, NY, USA, Article 7, 4 pages. https://doi.org/

10.1145/3012408.3012416

[134] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and
Hanspeter Mössenböck. 2016. Bringing Low-Level Languages to the JVM: Efficient
Execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop
on Virtual Machines and Intermediate Languages (Amsterdam, Netherlands) (VMIL
2016). Association for Computing Machinery, New York, NY, USA, 6–15. https:

//doi.org/10.1145/2998415.2998416

[135] Manuel Rigger, Roland Schatz, Matthias Grimmer, and Hanspeter Mössenböck.
2017. Lenient Execution of C on a Java Virtual Machine: Or: How I Learned
to Stop Worrying and Run the Code. In Proceedings of the 14th International Con-
ference on Managed Languages and Runtimes (Prague, Czech Republic) (ManLang
2017). Association for Computing Machinery, New York, NY, USA, 35–47. https:

//doi.org/10.1145/3132190.3132204

[136] Manuel Rigger, Roland Schatz, Jacob Kreindl, Christian Häubl, and Hanspeter
Mössenböck. 2018. Sulong, and Thanks for All the Fish. In Companion Proceedings
of the 2nd International Conference on the Art, Science, and Engineering of Programming
(Nice, France) (Programming ’18). Association for Computing Machinery, New York,
NY, USA, 58–60. https://doi.org/10.1145/3191697.3191726

[137] Manuel Rigger, Roland Schatz, René Mayrhofer, Matthias Grimmer, and Hanspeter
Mössenböck. 2018. Sulong, and Thanks for All the Bugs: Finding Errors in
C Programs by Abstracting from the Native Execution Model. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18).
Association for Computing Machinery, New York, NY, USA, 377–391. https:

//doi.org/10.1145/3173162.3173174

[138] Barry Rosen, Mark Wegman, and Kenneth Zadeck. 1988. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 12–27.
https://doi.org/10.1145/73560.73562

https://doi.org/10.1145/3012408.3012416
https://doi.org/10.1145/3012408.3012416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3191697.3191726
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/73560.73562

Bibliography 153

[139] Safepoint 2023. Safepoints in Java. https://medium.com/

software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766

[140] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius Pirvu,
and Mark Stoodley. 2011. Using Machines to Learn Method-Specific Compilation
Strategies. In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’11). IEEE Computer Society, USA, 257–266.
https://doi.org/10.1109/CGO.2011.5764693

[141] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural
Networks 61 (2015), 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

[142] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da
Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (Portland, Oregon, USA)
(OOPSLA ’11). Association for Computing Machinery, New York, NY, USA, 657–676.
https://doi.org/10.1145/2048066.2048118

[143] Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. 2013.
Automatic Construction of Inlining Heuristics Using Machine Learning. In Pro-
ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’13). IEEE Computer Society, Washington, DC, USA, 1–12.
https://doi.org/10.1109/CGO.2013.6495004

[144] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (jan 2014), 1929–1958.

[145] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, and Thomas Würthinger.
2012. Compilation Queuing and Graph Caching for Dynamic Compilers. In Pro-
ceedings of the Sixth ACM Workshop on Virtual Machines and Intermediate Languages
(Tucson, Arizona, USA) (VMIL ’12). Association for Computing Machinery, New
York, NY, USA, 49–58. https://doi.org/10.1145/2414740.2414750

[146] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. 2013. An Experimental Study of the Influence of Dynamic Compiler
Optimizations on Scala Performance. In Proceedings of the 4th Workshop on Scala
(Montpellier, France) (SCALA ’13). Association for Computing Machinery, New
York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/2489837.2489846

https://medium.com/software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766
https://medium.com/software-under-the-hood/under-the-hood-java-peak-safepoints-dd45af07d766
https://doi.org/10.1109/CGO.2011.5764693
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1145/2414740.2414750
https://doi.org/10.1145/2489837.2489846

154 Bibliography

[147] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2018. Partial
Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization (Orlando, FL, USA)
(CGO ’14). Association for Computing Machinery, New York, NY, USA, 165–174.
https://doi.org/10.1145/2544137.2544157

[148] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127.
https://doi.org/10.1162/106365602320169811

[149] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll factors using
supervised classification. In International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 123–134. https://doi.org/10.1109/CGO.2005.29

[150] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. 2003.
Meta Optimization: Improving Compiler Heuristics with Machine Learning. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (San Diego, California, USA) (PLDI ’03). Association for Computing Ma-
chinery, New York, NY, USA, 77–90. https://doi.org/10.1145/781131.781141

[151] Michele Tartara and Stefano Crespi Reghizzi. 2013. Continuous Learning of Com-
piler Heuristics. ACM Trans. Archit. Code Optim. 9, 4, Article 46 (Jan. 2013), 25 pages.
https://doi.org/10.1145/2400682.2400705

[152] Eclipse Deeplearning4j Development Team. 2016. DL4J: Deep Learning for Java.
https://github.com/eclipse/deeplearning4j

[153] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting Per-
formance Data with PAPI-C. In Tools for High Performance Computing 2009, Matthias S.
Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[154] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski,
and David Li. 2021. MLGO: a Machine Learning Guided Compiler Optimizations
Framework. (2021). https://doi.org/10.48550/ARXIV.2101.04808

[155] Foivos Tsimpourlas, Pavlos Petoumenos, Min Xu, Chris Cummins, Kim Hazelwood,
Ajitha Rajan, and Hugh Leather. 2023. BenchPress: A Deep Active Benchmark
Generator. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (Chicago, Illinois) (PACT ’22). Association for Computing
Machinery, New York, NY, USA, 505–516. https://doi.org/10.1145/3559009.

3569644

https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1145/781131.781141
https://doi.org/10.1145/2400682.2400705
https://github.com/eclipse/deeplearning4j
https://doi.org/10.48550/ARXIV.2101.04808
https://doi.org/10.1145/3559009.3569644
https://doi.org/10.1145/3559009.3569644

Bibliography 155

[156] Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins, Hugh
Leather, and Zheng Wang. 2022. Automating Reinforcement Learning Architecture
Design for Code Optimization. In Proceedings of the 31st ACM SIGPLAN International
Conference on Compiler Construction (Seoul, South Korea) (CC 2022). Association for
Computing Machinery, New York, NY, USA, 129–143. https://doi.org/10.1145/

3497776.3517769

[157] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Optimiza-
tion. Proc. IEEE 106, 11 (Nov 2018), 1879–1901. https://doi.org/10.1109/JPROC.

2018.2817118

[158] Geoffrey S. Watson. 1967. Linear Least Squares Regression. The Annals of Mathemati-
cal Statistics 38, 6 (1967), 1679 – 1699. https://doi.org/10.1214/aoms/1177698603

[159] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Laurent
Daynès, and Douglas Simon. 2013. Maxine: An Approachable Virtual Machine for,
and in, Java. ACM Trans. Archit. Code Optim. 9, 4, Article 30 (jan 2013), 24 pages.
https://doi.org/10.1145/2400682.2400689

[160] Christian Wimmer and Hanspeter Mössenböck. 2005. Optimized Interval Splitting in
a Linear Scan Register Allocator. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments (Chicago, IL, USA) (VEE ’05). ACM,
New York, NY, USA, 132–141. https://doi.org/10.1145/1064979.1064998

[161] Christian Wimmer and Hanspeter Mössenböck. 2006. Automatic Object Coloca-
tion Based on Read Barriers. In Proceedings of the 7th Joint Conference on Modular
Programming Languages (Oxford, UK) (JMLC’06). Springer-Verlag, Berlin, Heidelberg,
326–345.

[162] Christian Wimmer and Hanspeter Mössenböck. 2007. Automatic Feedback-Directed
Object Inlining in the Java Hotspot™ Virtual Machine. In Proceedings of the 3rd
International Conference on Virtual Execution Environments (San Diego, California,
USA) (VEE ’07). Association for Computing Machinery, New York, NY, USA, 12–21.
https://doi.org/10.1145/1254810.1254813

[163] Christian Wimmer and Hanspeter Mössenböck. 2008. Automatic Array Inlin-
ing in Java Virtual Machines. In Proceedings of the 6th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (Boston, MA, USA) (CGO
’08). Association for Computing Machinery, New York, NY, USA, 14–23. https:

//doi.org/10.1145/1356058.1356061

https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1214/aoms/1177698603
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1145/1254810.1254813
https://doi.org/10.1145/1356058.1356061
https://doi.org/10.1145/1356058.1356061

156 Bibliography

[164] Christian Wimmer and Hanspeter Mössenbösck. 2010. Automatic Feedback-
Directed Object Fusing. ACM Trans. Archit. Code Optim. 7, 2, Article 7 (oct 2010),
35 pages. https://doi.org/10.1145/1839667.1839669

[165] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Program-
ming, and Applications: Software for Humanity (Tucson, Arizona, USA) (SPLASH
’12). Association for Computing Machinery, New York, NY, USA, 13–14. https:

//doi.org/10.1145/2384716.2384723

[166] Thomas Würthinger, Danilo Ansaloni, Walter Binder, Christian Wimmer, and
Hanspeter Mössenböck. 2011. Safe and Atomic Run-Time Code Evolution for
Java and Its Application to Dynamic AOP. In Proceedings of the 2011 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA ’11). Association for Computing Machinery,
New York, NY, USA, 825–844. https://doi.org/10.1145/2048066.2048129

[167] Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and Hanspeter
Mössenböck. 2010. Applications of Enhanced Dynamic Code Evolution for Java in
GUI Development and Dynamic Aspect-Oriented Programming. In Proceedings of the
Ninth International Conference on Generative Programming and Component Engineering
(Eindhoven, The Netherlands) (GPCE ’10). Association for Computing Machinery,
New York, NY, USA, 123–126. https://doi.org/10.1145/1868294.1868312

[168] Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and Hanspeter
Mössenböck. 2010. Improving Aspect-Oriented Programming with Dynamic Code
Evolution in an Enhanced Java Virtual Machine. In Proceedings of the 7th Workshop on
Reflection, AOP and Meta-Data for Software Evolution (Maribor, Slovenia) (RAM-SE
’10). Association for Computing Machinery, New York, NY, USA, Article 5, 5 pages.
https://doi.org/10.1145/1890683.1890688

[169] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. 2013. Unrestricted and
Safe Dynamic Code Evolution for Java. Sci. Comput. Program. 78, 5 (may 2013),
481–498. https://doi.org/10.1016/j.scico.2011.06.005

[170] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013.
One VM to Rule Them All. In Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software (Indianapolis,
Indiana, USA) (Onward! 2013). Association for Computing Machinery, New York,
NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

https://doi.org/10.1145/1839667.1839669
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2048066.2048129
https://doi.org/10.1145/1868294.1868312
https://doi.org/10.1145/1890683.1890688
https://doi.org/10.1016/j.scico.2011.06.005
https://doi.org/10.1145/2509578.2509581

Bibliography 157

[171] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In Proceedings of the 8th
Symposium on Dynamic Languages (Tucson, Arizona, USA) (DLS ’12). Association for
Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/

2384577.2384587

[172] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014. Space-
Efficient Multi-Versioning for Input-Adaptive Feedback-Driven Program Optimiza-
tions. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (Portland, Oregon, USA) (OOP-
SLA ’14). Association for Computing Machinery, New York, NY, USA, 763–776.
https://doi.org/10.1145/2660193.2660229

https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2660193.2660229

159

Acknowledgements

The slight touch of pride is nothing compared to the humility and gratefulness I am feeling
while writing these last lines of my thesis. Pride, as I am about to finish my PhD. Humility,
as I could not have finished it on my own. Gratefulness, as there are so many people
whose support I could count on during this time.

Most of my gratitude belongs to my supervisor Prof. Hanspeter Mössenböck, whose guid-
ance constantly encouraged me to reflect on my own work, with whom discussions always
ended in expanding my own horizon and who always provided invaluable feedback and
improvements to my scientific work, even on short notice before paper deadlines.

I also want to thank Prof. Andreas Krall for his readiness to be the second reviewer of my
thesis and a member of the defense senate.

My infinite gratefulness belongs to David Leopoldseder, who co-supervised me as part
of the Oracle Labs research collaboration. David, thank you for your endless expertise
on technical issues, but more importantly: Thank you for your steady encouragements
during times of setback. Your words always motivated me to keep on going.

Many thanks belong to Wolfgang Kisling, who I supervised during his Master’s and who
did a great job when working on our machine learning backend.

I am also thankful to my colleagues from the SSW; for the valuable technical discussions
and even more for the less valuable but always amusing office chitchat. Here, I want
to especially highlight my former and current fellow PhD students: Markus Weninger,
Andreas Schörgenhumer, Florian Latifi, Jacob Kreindl, Sebastian Kloibhofer, Lukas Makor
and Christoph Pichler.

Special thanks to Thomas Würthinger and Oracle Labs; being part of a research collabora-
tion with a renowned company has been a great pleasure for me. I also want to thank some

160 Acknowledgements

people from Oracle labs who provided frequent advice to my research or collaborated
with me when publishing papers: Lukas Stadler, Adam Pocock, Gergö Barany and Milan
Cugurovic.

Doing a PhD can blur the line between professional and private life. Thus, I want to
express my deepest gratitude to my family and friends who always stood by my side,
whether it was to provide moral support or to rejoice with me in times of success. More
importantly, you are giving me the feeling that this will not change in any future to come:
Thank you!

	I Introduction and Overview
	1 Introduction
	1.1 Problem Setting
	1.2 Problem Statement
	1.3 State-of-the-Art
	1.4 Remaining Challenges
	1.5 Contributions
	1.5.1 Scientific Contributions
	1.5.2 Technical Contributions
	1.5.3 Publications

	1.6 Limitations
	1.7 Project Context
	1.8 Outline

	2 Background
	2.1 GraalVM
	2.1.1 HotSpot VM
	2.1.2 GraalVM Compiler
	2.1.3 Graal IR
	2.1.4 Truffle

	2.2 Machine Learning
	2.2.1 Terminology
	2.2.2 Machine Learning Models

	3 Overview
	3.1 Machine Learning to Assist Compiler Engineers
	3.2 Predicting the Code Size Impact of Duplication
	3.3 Compilation Forking
	3.4 Self-optimizing Models
	3.5 Unrolling of Vectorized Loops

	II Publications
	4 Machine Learning in Dynamic Compilers
	5 Predicting Code Size
	6 Compilation Forking
	7 Self-optimizing Heuristics
	8 Learned Vector Unrolling

	III Related Work and Conclusions
	9 Related Work
	9.1 Previous PhD Theses
	9.2 Iterative Compilation and Multi-versioning
	9.3 Autotuning
	9.4 Machine Learning in Static Compilers
	9.5 Machine Learning in Dynamic Compilers
	9.6 Data Generation
	9.7 Entry Barrier
	9.8 Self-optimizing Models

	10 Future Work
	11 Conclusions
	Bibliography
	Acknowledgements

